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In this paper we deal with the construction of hybrid flux-vector-splitting (FVS)
schemes and flux-difference-splitting (FDS) schemes for a two-phase model for one-
dimensional flow. The model consists of two mass conservation equations (one for
each phase) and a common momentum equation. The complexity of this model, as
far as numerical computation is concerned, is related to the fact that the flux can-
not be expressed in terms of its conservative variables. This is the motivation for
studying numerical schemes which are not based on (approximate) Riemann solvers
and/or calculations of Jacobian matrix. This work concerns the extension of an FVS
type scheme, a Van Leer type scheme, and an advection upstream splitting method
(AUSM) type scheme to the current two-phase model. Our schemes are obtained
through natural extensions of corresponding schemes studied by Y. Wada and M.-S.
Liou (1997,SIAM J. Sci. Compul.8, 633-657) for Euler equations. We explore the
various schemes for flow cases which involve both fast and slow transients. In particu-
lar, we demonstrate that the FVS scheme is able to capture fast-propagating acoustic
waves in a monotone way, while it introduces an excessive numerical dissipation
at volume fraction contact (steady and moving) discontinuities. On the other hand,
the AUSM scheme gives accurate resolution of contact discontinuities but produces
oscillatory approximations of acoustic waves. This motivates us to propose other
hybrid FVS/FDS schemes obtained by removing numerical dissipation at contact
discontinuities in the FVS and Van Leer schem@oo2 Elsevier Science (USA)

Key Wordstwo-phase flow; hyperbolic system of conservation laws; flux-vector
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1. INTRODUCTION

A recent trend in the development of upwind schemes has been to construct hyl
flux-difference-splitting (FDS) and flux-vector-splitting (FVS) schemes where one tries
combine the accuracy of FDS in the resolution of contact discontinuities and the robustr

674

0021-9991/02 $35.00
(© 2002 Elsevier Science (USA)
All rights reserved.



HYBRID FLUX-SPLITTING SCHEMES 675

of FVS in the capturing of stronger discontinuities. For an overview of different imple
mentations of such ideas for calculation of single-phase inviscid flow (Euler equations
well as viscous flow (Navier—Stokes) we refer to [7] and references therein. The purpos
this work is to explore such approaches for a two-phase model used to simulate unst
compressible liquid and gas flow in pipes.

The unsteady two-phase simulation represents an important tool for gaining insight |
flow processes where oil and gas are transported simultaneously out of a reservoir. To de
and operate such transport systems, flow rate and pressure fluctuations must be prec
with good accuracy. Such fluctuations typically arise due to a combination of operati
conditions and the two-phase nature. The two-phase model we explore in this worl
written in the following conservative vector form:

o) 0 o0 0
B ®g/g + 0x ®g/glg =| 0| (2)
o PV + AgPglg a1 p1vf + agpgv + p —q

The model assumes isothermal conditions, and the unknowns,argthe liquid and gas
densitiesg, ag the volume fractions of liquid and gas, vy the velocities of liquid and
gas,p the common pressure for liquid and gas, gra source term. The system is a one-
dimensional two-phase model of the drift-flux type. Since the momentum is given or
for the mixture, we need an additional closure law, a so-called hydrodynamic closure |
which connects the two-phase velocities. More generally, this law should be able to t
into account different flow regimes. In addition, we need a thermodynamic equilibriu
model which specifies the fluid properties. For more details related to the current two-ph
model we refer to [1, 9, 10, 17, 20].

Due to the complexity of the hydrodynamic and thermodynamic models, we can
expect to have an analytical expression for the physicalflax) associated with Eq. (1)
in terms of its conservative variables[9, 15, 17]. In general, it is therefore difficult to
use more classical numerical schemes such as the Godunov or Roe schemes whic
based on an algebraic given Riemann solver. For works dealing with numerical schel
for the present two-phase model we refer to Masetlal. [15], Romate [17], Faille and
Heintze [9], Fjelde and Karlsen [11], and Evje and Fjelde [8]. The crucial point is th
we have no analytical expression for the Jacobian matrix, hence this must generally
computed numerically. Therefore, the potential gain in terms of computation time by us
sequential-based methods like hybrid FVS/FDS schemes becomes a much more impc
aspect for the current two-phase model than for the Euler equations. This fact has be
main motivation for exploring how to extend hybrid FVS/FDS type discretization techniqu
to the present two-phase model. Through these investigations we also seek to obtain in
into discretization techniques that can be applied to more general two-phase models as
i.e. two-fluid models where a set of equations for each phase must be considered.

At this point we recall some general facts regarding FVS versus FDS schemes. U
now several basic upwind schemes have been proposed, and most of them are categ
as either FDS or FVS. The former is based on using an exact or approximate solution of
local Riemann problem, while the latter typically splits the flux vector into upstream al
downstream traveling components according to the sign of its eigenvalues. More precis
in FVS, the flux functiorF is divided into positive and negative parts,

Fw) = F~(w) + F(w),
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which give the numerical flux at the cell interface+ 1/2) between the stateg, andwgr
by considering

Fj+1/2(We, W) = FH(wp) + F~(Wg). 2

FDS is based on matrix calculations, while FVS is based on scalar calculations. Cor
quently, FVS is more efficient than FDS; however, it introduces excessive numerical dis
pation. During the past few years much of research has been done on the Euler equa
motivated by the desire to combine the efficiency of FVS and the accuracy of FDS. The i
is to eliminate surplus dissipation of the FVS by introducing the flavor of the FDS into FV
schemes. These schemes are not FVS anymore since their numerical flux typically ca
be expressed in the splitting form (2). They are a hybrid of FVS and FDS. We refer to [2
and [7] for nice overviews of different FDS and FVS schemes as well as hybrid FVS/FL
schemes studied for the Euler and Navier—Stokes equations.

In this paper we are interested in extending some flux-splitting schemes previously inv
tigated for Euler and Navier—Stokes calculations to solve for unsteady compressible lic
and gas flow in a pipe. In particular, we consider the performance of an FVS type sche
a Van Leer type scheme, and an advection upstream splitting method (AUSM) type sch
for the current two-phase model. Our schemes are obtained through natural extensiol
corresponding single-phase schemes proposed by Wada and Liou [24] for Euler equati
We demonstrate that FVS is able to capture propagation of stronger discontinuities |
monotone way, while it introduces an excessive numerical dissipation at volume fract
contact (steady and moving) discontinuities. AUSM, on the other hand, gives accurate re
lution of contact discontinuities, but produces highly oscillatory approximations for strong
discontinuities. This motivates us to propose other hybrid FVS/FDS schemes obtainec
removing dissipation in the FVS and Van Leer schemes at contact discontinuities.

One such approach is based on modifying the velocity-flux-splitting formulas associa
with these schemes such that they yield vanishing numerical dissipation for a statior
volume fraction contact discontinuity while they produce a mass flux similar to that
AUSM for a moving volume fraction contact discontinuity. This idea is explored for th
FVS and Van Leer schemes and gives rise to two corresponding schemes denoted as AU
and AUSMD (motivated by the notation used in [24]).

The rest of this paper is organized as follows: In Section 2 we give a more detail
presentation of the two-phase model we want to solve. In Section 3 we present three diffe
flux-splitting schemes for the two-phase model, an FVS, a Van Leer and an AUSM ty
scheme. In Section 4 we consider the performance of these schemes for three different
cases. We make some observations concerning the dissipation mechanism of the va
schemes in Section 5. Then, in Section 6 we suggest an approach for removing exce:
dissipation. Finally, in Section 7 we revisit flow cases studied in Section 4 and do mc
testing of the AUSMV scheme.

2. THE TWO-PHASE MODEL

The numerical simulation of two-phase flow is a challenging mathematical and industt
research area. The complete local description of such flows is very complex and an ave
ing technique is used to derive models suitable for computation [6, 13]. When motions
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the two phases are strongly coupled, the relative velocity of the two-fluid system is sn
and a simplified model can be obtained which consists of a system of conservation law:
the mass, momentum, and energy balance equations for the gas—liquid mixture. How
such mixture models (homogeneous equilibrium models) are inefficient when the kinem
disequilibrium becomes significant. For such cases a set of equations for each phase
be considered, which leads to so-called two-fluid models. Significant research activity
lated to the study of upwind type schemes and their extensions to different variants of
two-fluid model has taken place over the last 10 years; see [2-4, 5, 12, 18, 21, 22]
references therein.

For isothermal flow, one version of the basic one-dimensional two-fluid system is 1
following model:

o[ o] + k[ piu] =Ty
dt[agpg] + Ox[agpgug] = I'g

)
o] + o [mov?] +adp+ 1 = MP +q

The unknowns argy, p4 the liquid and gas densities,, oy the volume fractions of liquid
and gasy, vy the velocities of liquid and gas, anpl the common pressure for liquid
and gasI', I'y represent mass exchanges between the two prgsagare source terms
representing frictional and gravity forces, whi4® = —Mg are source terms reflecting
interphase drag. Finally, 7y are differential terms which are mathematically relevan
because they affect the well-posed nature of the system.

The above system is difficult to solve for several reasons: First, the system is not in ¢
servation law form due to the pressure terms, and these terms must be carefully handl
the presence of discontinuities, (see [5] for instance). Second, the source terms assoc
with interphase drag are stiff, acting on a very short time scale. Typically, this can ca
problems in the numerical computation [16]. Third, upwinding requires some knowled
of the eigenstructure of the Jacobian of the flux function corresponding to the above syst
In contrast to the case of single-phase and two-phase mixture flow models, it is much n
complicated to compute the eigenvalues and eigenvectors of the system due to con
phasic interactive processes [2, 4, 5]. Finally, we should mention that the system mi
fail to be hyperbolic. This can lead to an ill-posed problem which in turn might produc
oscillations in the numerical solutions.

Two-phase flow models are widely used within the petroleum industry to describe p
duction and transport of oil and gas through long pipelines as well as to evaluate the tran:
responses of drilling operations. Due to the complexity of the two-fluid model, modele
commonly use the simpler drift-flux model. This model is obtained from the two-flui
model by adding together the respective liquid and gas momentum and energy equa
to produce mixture momentum and energy equations. Difficult terms related to phase
teractions cancel out, and the missing information is replaced by an empirical slip equa
which gives a relation between the phase velocities. Source terms related to mass t
fer, friction, and gravity are still present in the model. In addition, the equations are n
in conservative form. The drift-flux model has been shown to be hyperbolic, at least i
physically reasonable region of parameters [1, 17]. In particular, for isothermal flow, t
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drift-flux model takes the form

dlap] + oxlaou] =T
Ot[en o1y +Olg/0gvg] + 0« [Oll Ll U|2 +agpgvs + p] = —q.

We now describe this model in more detail. First, we assume that there is no mass trar
between the phases, hence

I =Tg=0.
Furthermore, for computational purposes we assume an analytical slip law of the form
Vg = K Umix + S, (5)

wherevmix = au + agug is the mixture average velocity arid, S are flow-dependent
parameters. We assume that the liquid density has the form

o =po+ P ;Zpl'o, (6)

whereg = 1000 m/s is the velocity of sound in the liquid phase angland p o are given
constants. Here we will assume tlg = 1000 kg/n? andp o = 1 bar. For the gas density,
we assume the form

po = %, (7)

whereag = 316 m/s is the velocity of sound in the gas phase. The volume fractions &
related by

a +ag=1
Finally, for the source terrg we have
q= Fu + Fg,

whereFy = g(a o1 + agpg) Siné represents the gravity whegés the gravitational constant
andé is the inclination. The viscous forces and forces between the wall and the fluids
taken into account through the frictional force telfpgiven by the following simple model

_ 320 mix mix

F, = o, ®)

whered is the inner diameter and the mixed viscosityix is given by

Kmix = o i + agllg,

and the viscosity for liquid and gas are assumed jobe 5 x 102Pasang.y = 5x 10°°
Pa s respectively.
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We can write the system (4) in the conservative vector form

W + oy F(w) = G(w), 9)
where
o0 oo
W= Qg g ) F(w)= ¥gPglq )
a1 P+ agPgig o p1vf + agpgud + p

0

Gw=| 0 |. (10)
—q

It can also be instructive to express the above system in the form

w1 vjwy 0
8t w2 + ax Ung = O ) (11)
w3 viwg + vng + p(wz, wo) —q

wherew; = ) 0, wy = agpg, andws = o p v + agpgvg. Note that pressure= p(w, wy)

is a passive variable obtained from the conservative variabl@ndw,. This is used in the
numerical algorithms presented later. For a more comprehensive discussion of mathems
properties of the drift-flux model we refer to [20] and [1]. Here we will just recall that unde
the condition of incompressible liquid and when

agpg K 1P, (12)

for two-phase regions whetgy € (0, 1), the following approximativesound velocity has
been devised:

2 p

W= (13)
QgL 1- K‘Xg)
The corresponding eigenvalues are given by
M= — o, A2 = vg, A3 =1 + . (14)

The first and third eigenvalues correspond to pressure pulses propagating downstrear
upstream while the second eigenvalue represents the wave speed of the gas volume
traveling downstream. For pure liquid regiong & 0) we have

M=y —aq, A3=v + &, (15)

whereg, is the sound velocity of the liquid phase. These eigenvalues correspond to pres:
pulses propagating upstream and downstream. Similarly, for pure gas ragjoasl] we
have

A =vg — ag, A3 = vg + ag, (16)

whereag is the sound velocity of the gas phase:
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Remark 1. Note that the drift-flux model (4) and the two-fluid model (3) both consis
of two mass conservation equations. As far as accurate and robust calculation of cor
discontinuities is concerned, one might expect that the two models are closely interrela
Hence, by investigating numerical schemes for the drift-flux model we also seek insi
into the basic mechanisms relevant to developing accurate and robust numerical sche
for the two-fluid model.

Remark 2. The analytical slip law (5) which describes the relation betwgeandvg
can be replaced by more general models. In particular, for more realistic flows the ¢
velocity between the two phases should be given by a hydrodynamical model that acco
for the different flow regimes. Similarly, the models for fluid properties given by the densi
models (6) and (7) should be replaced by more general thermodynamical models. Howe
methods developed in this paper still apply. See Section 7.4 for more on this.

Remark 3. Regarding two-phase flow in pipelines, it is convenient to identify thre
classes of physical phenomena which all work on different time scales [19]. These
interphase exchanges, fluid transport, and propagation of pressure pulses (sonic wa
This paper focuses on the last two phenomena. Concerning transport of gas and liquid
high compressibility of the gas phase relative to the liquid phase leads to a highly dynal
process. The flow behavior will depend greatly on the pressure development in the pipe
which in turn is determined by effects related to wall friction and hydrostatic conditions. C
the other hand, pressure pulses are mainly caused by inlet flow rate changes. These v
have a characteristic time scale that is 10—-100 times smaller than the transient behavi
fluid transport. The pressure waves are usually small in magnitude and propagate as ¢
perturbations of the pressure generated by the dynamics of mass transport.

Remark 4. A notable fact is that the two-phase mixture has a much lower sonic veloci
than both pure liquid and gas. If we consider a plot of the sonic velocity as a function
the gas volume fraction, we will see that the acoustic velocity changes very rapidly in 1
“one-phase to two-phase” transition regions [10, 17]. Typically, the sound speed can
several orders of magnitude higher in the liquid phase than in the two-phase mixture. T
gives rise to strong nonlinear effects.

3. FLUX-SPLITTING SCHEMES

Instead of discretizing the fluk of (4) directly, we want to treat the convection and
pressure terms separately in the discretization procedure. The natural splitting of the t
flux into convective and pressure parts is given by

o oY 0
F=F+Fp,= 0lgPglg +10]. a7
a prvf +“ng”5 P

A finer treatment of the convective flux can be taken by considering a further breakup
follows:

1 0
Fe=Fei+Feg=aipv | O | +agpgvg| 1 . (18)
1] Ug

Based on this splitting we now describe three different numerical schemes.
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3.1. Two Hybrid FDS/FVS Schemes: AUSM and Van Leer

Itis well known that there is an excessive dissipation at contact discontinuities associs
with FVS schemes. This will be demonstrated below for the current two-phase model.
the other hand FDS schemes perform very well for contact discontinuities. This motive
us to try to eliminate the surplus dissipation of the FVS by introducing the flavor of the FL
into FVS schemes. Following [24] we now describe two such approaches. Basically,
idea is to identify a suitable “convective speed” and then implement upwind principles
the discretization of the convective terms. Starting with (17) and (18) we now focus on t
different constructions where this idea is carried out. In view of (18) a natural choice
defining the interface convective speed is the mass fluxesu ) j+1/2 and(agpgvg) j+1/2,
which provide the sign as well as value appropriate for upwinding. The numerical flux
the interfacej + 1/2 can then be written as

1
Fitr2We, Wr) = = [(@rov)j1/2(P1L + Bir) — [(rpv)jr2|(Prr— P )]
2

1
+ é [(Olgpgvg)j+1/2(‘I>g,L + (}g,R) — ’(agpgvg)j+1/2‘
X (@gr— gL)] + (Fp)j+12. (19)

where®; = (1,0, )7, &4 = (0,1,v9)", andFp = (0,0, p)T. Here the interface mass
fluxes (a1 pv1) j+1,2 and (agpgvg) j+1/2 €an be chosen in different ways. We follow along
the line of Wada and Liou [24], who considered single-phase flow, and propose the follow
Van Leer and AUSM schemes for two-phase flow (we use the same discretization for k
phases).

e Van Leer type:

Van Leer __

(apv)ii1p = V* (v, Cjpy2)ap + V7 (R, Cji1/2)dRPR. (20)
e AUSM type (U-splitting):

1
(apv)?ﬁf/“é =5 [vj11/2(aLpL + @RPR) — ‘Uj+1/2‘(aR,0R —apR)]. (21)

wherevj ;12 = v + vg andv] = V¥ (v, ¢j11/2) andvg = V™ (vR, Cj+1/2). We observe
that since we use acommon sound velocity, the AUSM M-splitting and U-splitting coincic
Here the velocity-splitting formulag * are defined by

+lw+ce? ifv<c
Vip,op=4{ * (22)
sw=*[v])  otherwise
In particular, the splitting functiong * satisfy the consistency condition
V*(,c)+V (v,c) =v. (23)

For the pressure teriR,, an FVS type discretization of the following form is used,

Pj+12 = P* (v, Cj11/2) PL + P~ (vr. Cjs1/2) PR (24)
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wherev is a mixed fluid velocity, and the pressure-splitting formukis are given by

. . T(x2-2) if | <c
P*(w,c) =V~(,0) - X ) (25)
3 otherwise

Forthe definition of a sound velocityassociated with the mixture, we obtain an approximate
sound velocity using the model

a ifog<e
Clag) =S o ife<ag<l-ce (26)
ag ifog>1—e¢,

wherew is given by (13) anc is a small parameter whose purpose is to ensure th:
we have a smooth transition from a two-phase to a single-phase sound velocity. We t
usede = 0.001 for all simulations presented in this work. We define a common spe
Cj+1/2 associated with the interfage+ 1/2 which is an average af andcg. Note that

a common sound speed has been used before for Euler equations for both AUSMDV |
and AUSMt [14]. Following [24] we will use the choice= max(c_, cr) in this work.
For the discretization of the pressure term occurring in the mixed momentum equation
need a fluid velocity for the mixture of the two phases. One natural choice is to conside
mixed fluid velocityvmix given by

UV = Umix = oV + Qgug. 27)

This choice is motivated by the fact that for the flow cases we study in this work, it
reasonable to assume that both phasic mass fluxes behave as if they are subsonic. The
definition of vmix ensures that the pressure term will be treated as subsonic as well. M
generally, one should also explore other choices which guarantee a consistent discretiz:
of the convective and pressure terms.

3.2. An FVS Scheme

We now briefly describe an FVS scheme for our two-phase model. The discretizatior
the pressure term remains the same; for the convective terms, we use the discretizatio

FRD WL, WR) = (o)L ¥ + (1p)rY R + (dgpg)L Py
+ (@gpg)rRWg r + (Fp)jt1/2, (28)
whereF, = (0,0, p)" and
‘I’I+,L = ‘I’|Jr (UI,Ls Cj+1/2), Y=Y (vLR, Cj+1/2), (29)
where
1 1
\Il|+(v, Cc) = V+(v, ol o], \Ill_(v, o=V wol|o]l, (30)

v v
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where the velocity-splitting formulag* are given by (22). Similarly, we have for the gas
phase

0 0
Vim0 =Vrwol1], vywo=v-wol1l], (31)
v v
and
CoL =95 (voL:Cis12),  ¥gr=Tg(vgr, Cit12)- (32)

Note that this FVS scheme coincides with the Van Leer scheme for the mass conserve
equations, while the discretization of the mixed momentum equation is different. Fina
we note that our scheme is really an FVS scheme since we can write the flux in the for

FiDow, w) = F~ (W) + FT(w), (33)
where
0
F-W) =aop ‘I’|+(UI ,0 + Olg,Og‘I’;r(Ug, o+ 0 p
P+(Umi><7 ©)
0
FrW) = a1 ®[ (v, ©) 4 agpg P (vg, ©) + 0 p.
Pi(vmiX7 C)
Due to the relations
v 0
w0 +¥ (v,0)=(0], PJw,0+P 0w, 0=]|"V [,
v2 v2

Pt(v,c)+ P (v,0) =1,

we can conclude that (33) holds. In the following sections we will investigate some ba
properties possessed by the three schemes introduced above.

3.3. Extension to Second-Order Spatial and Temporal Accuracy

A second-order variant of the various schemes for the two-phase model is obtainec
using the classical MUSCL technique [23]. We choose to extrapolate the primitive variak
u = (i, ag, o1, Pg, v, vg) (rather than the conservative variablgs This is done according
to the formulas

AX AX
UL :==uj + 7S(D—Uj7 D.iuj), UR = Uj41 — 7S(D—Uj+1, Diuji1), (34)
where S(u, v) is the slope limiter. We have used the Van Leer limiter in the numeric:

experiments. Second-order accuracy in time is obtained by using a two-stage Runge—
discretization.
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3.4. Boundary Treatment

Because of the hyperbolic nature of the model we are studying, it is important to tr
precisely the information going in and out of the system. The treatment of the bound
conditions takes into account the information going out of the system through a set
compatibility conditions. These are solved together with the imposed boundary conditic
using an upwind discretization. Considering the last two test cases studied in this work,
specify some mass flow rates at the inlet of the pipeline, while keeping the pressure cons
at the outlet end. For more details we refer to [11].

4. SOME NUMERICAL EXAMPLES

The purpose of the numerical experiments is to reveal differences and similarities am
the three schemes developed above. In particular, we want to explore the ability of
various schemes to produce monotone and accurate discontinuity profiles in pressure,
velocities, and volume fraction. First, we consider a two-phase shock tube problem. T
we consider a flow case characterized by fast transients (propagation of sonic waves). I
third example, we consider the slower transient of liquid and gas transport. In particular,
wish to treat the most difficult case where one of the phases disappears. See also Rem
for more on various flow phenomena.

Since the discrete fluxes are treated explicitly in time, the schemes presented abov
subject to the (CFL) condition

AX
At = CFL , (35)
max(|Ayl, [A2], [A3])

where,; is given by (14), (15), and (16). For the first example we use the rough estim:
max(|A1], [A2], |A3]) & 30, while for the last two we apply the estimate rfjax|, |12, |A3]) ~
1000. We also note that in the numerical algorithms, pressure is obtained as a passive
able from the conservative variablesg, w,. Generally, it is not possible to calculate any
analytical solution for the two-phase model. Consequently, for the various flow cases |
sented, we have computed a reference solution by using the AUSMV scheme describe
Section 6 on a fine grid.

4.1. Shock Tube Problem

Following [1, 11] we consider a slightly simplified model by assuming that the liqui
density is constant = 1000 kg/n¥ and by neglecting the wall frictiof,,. Furthermore,
we use the slip law (5) wher€ =1.07 andS = 0.216. A horizontal pipe of length 100 m
is considered, which initially is separated in a left and right statgyat 50 m. More
precisely, we assume the initial data

agL = 0.55, v =10370m/s, p_ = 80450 Pa
agr =055 yr=0561lm/s, pr=24282Pa.

For the numerical calculations we use CEL1.0 together with a space discretization
Ax = 0.5 m. Simulation results for FVS, Van Leer, and AUSM are presented in Figs. 1-
We have plotted the gas volume fraction, liquid velocity, and pressure atttin&.0 s.
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LIQUID VELOCITY (m/s)
PRESSURE (bar)

GAS VOLUME FRACTION

0 0 @ @ 1 ]
m)

IR @ 0 8 w10 (D
LENGTH OF PIPE (m) )

0 5 0 0 60
LENGTH OF PIPE LENGTH OF PIPE (m)

FIG. 1. First-order FVS. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The plots ar
considered after = 1.0 s.

The solution of this problem is composed of a 1-shock, a 2-contact, and a 3-shock. S
our main interest is characteristic properties related to stability and accuracy of the vari
schemes we have only computed first-order approximations.

We observe that the results obtained with all three schemes are in good agreement. We
conclude that this flow problem reveals no essential difference among the three schen

4.2. Fast Transients—Propagation of Pressure Pulses

Next, we focus on an example with fast transients where fast-moving sonic (acous
waves in pressure and fluid velocities occur. A similar test case was used in [11]. For our
case we assume that we have a 1000-m-long pipe with diameter 10 cm. The first 750 n
filled with 99% liquid and 1% gas while the last 250 m are filled with 10% liquid and 909
gas. The pressure is initially 1 bar in the pipeline and the fluids are stagnant. For simpli
we have considered the no-slip case- vg. We now introduce a pulse in pressure and fluic
velocities by increasing the inlet liquid rate from 0 to 0.3 kg/s in 0.0025 s. We use CI
= 1.0 and a space discretizatidtx =10 m. The first-order simulation results for FVS,
Van-Leer, and AUSM are shown in Figs. 4—6. Discontinuity waves are formed in press|
and velocity which move with a sound velocity of approximately 100 m/s before they rea

GAS VOLUME FRACTION
PRESSURE (bar)

LIQUID VELOCITY (m/s)

© % @ W 1 0 100 I
LENGTH OF PIPE (1) LENGTH OF PIPE ()

FIG. 2. First-order Van Leer. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The plot
are considered aftér= 1.0 s.
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LIQUID VELOCITY (mis)

GAS VOLUME FRACTION
PRESSURE (bar)

) IR 0 0 ® N o N O N 8 % 100
LENGTH OF PIPE (m) LENGTH OF PIPE () LENGTH OF PIPE ()

FIG. 3. First-order AUSM. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The plots art
considered after= 1.0 s.

the gas-dominated region, where the sound velocity becomes approximately 30 m/s. W\
these pulses experience the sudden change in the gas volume fraction located at 750
changes in compressibility and sound velocity produce reflecting waves in pressure
velocity, (see also Remark 4).

4.2.1. FVS and Van LeerFrom Fig. 4 we observe that FVS has a very good ability tc
produce nonoscillatory approximations of the acoustic waves in pressure and fluid veloc
However, the approximation of the stationary gas volume fraction contact discontinuity
poor (left plot). For that reason a strong loss of accuracy is seen in pressure and velc
after the pulses have reached the gas-dominated region starting at 750 m. Discontint
in pressure and velocity are misplaced (see middle and right plots) as well as smearec
because of the strong smearing of the gas volume contact discontinuity. Figure 5 shows
the solution produced by the Van Leer scheme is close to the FVS scheme. However
see that the Van Leer scheme introduced a slight oscillation in pressure and velocity &
timet = 2.5 s (see middle and right plots).

4.2.2. AUSM. The AUSM scheme has vanishing numerical dissipation at the statione
gas volume fraction contact discontinuity. This is clearly demonstrated in Fig. 6 (left plo
However, AUSM produces a highly oscillatory approximation of the pressure and veloc
waves, which makes it unsuitable for accurate calculations of fast transients such as tl
introduced in the current flow case.
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PRESSURE (bar)

GAS VOLUME FRACTION
LIQUID VELOCITY (m/s)

[t

0 10 20 N A0 S0 60 70 80 90 1000 0 10 20 M0 40 50 60 70 80 %0 1000 0 0 WM WO A0 0 60 T B0 W0 1000
LENGTH OF PIPELINE () LENGTH OF PIPE (1) LENGTH OF PIPE ()

FIG. 4. First-order FVS. Left: Gas volume fraction aftee= 7.5 s. Middle: Liquid velocity. Right: Pressure.
The plots of liquid velocity and pressure are considered afte2.5, 7.5, and 10.0 s.
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FIG. 5. First-order Van Leer. Left: Gas volume fraction aftee= 7.5 s. Middle: Liquid velocity. Right:
Pressure. The plots of liquid velocity and pressure are considered aft@rs, 7.5, and 10.0 s.

4.2.3. Some remarks Accurate and robust simulation of propagation of pulses in pre:
sure and fluid velocities is indeed a challenging task since it typically involves both discot
nuities where the gas—liquid mixture stays in a mechanical nonequilibrium state and volt
fraction contact discontinuities where the gas—liquid mixture stays in an equilibrium ste
It seems that of the three schemes, the FVS scheme has the best ability to capture s
discontinuities. However, the dissipative mechanism of FVS is a “disaster” for station:
volume fraction contact discontinuities. To demonstrate that this is a fundamental probls
we calculated the solution by using a second-order variant of FVS where we used the
Leer slope limiter, see Fig. 7. Due to the smearing of the volume fraction contact discol
nuity, the propagating waves are still misplaced and a sharp “spike” is produced in the fi
velocity after timet = 10 s. On the other hand, the dissipation provided in AUSM doe
not seem, to be sufficient to deal with the mechanical nonequilibrium state discontint
of this test case; however, it handles stationary contact discontinuities without introduc
numerical diffusion.

4.3. Slow Transients—Transport of a Gas Volume Fraction Contact Discontinuity

Now we want to check the FVS, Van-Leer and AUSM schemes and their performatr
on the transport of a slowly moving linear gas volume fraction wave (moving conte

PRESSURE (bar)

GAS VOLUME FRACTION
LIQUID VELOGITY (m/s)

001

L L L L . L L L L s s L L . . L L L .
0 10 20 0 40 50 K0 700 80 0 1000 0 10 20 0 40 50 60 700 80 0 1000 0 10 20 W0 40 S0 60 700 g0 X0 1000
LENGTH OF PIPELINE () LENGTH OF PIPE (m) LENGTH OF PIPE (m)

FIG.6. First-order AUSM. Left: Gas volume fraction aftee= 7.5 s. Middle: Liquid velocity. Right: Pressure.
The plots of liquid velocity and pressure are considered afte2.5, 7.5, and 10.0 s.
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[
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GAS VOLUME FRACTION

S L L O . . . . - L I . . . L .
0 700 80 %0 1000 0 100 200 30 A0 50 60 700 80 %00 1000 0 100 200 30 40 50 60 700 80 %00 1000

0 100 00 0 40 50 6
LENGTH OF PIPELINE (1) LENGTH OF PIPE (1) LENGTH OF PIPE ()

FIG.7. Second-order FVS. Left: Gas volume fraction after 7.5 s. Middle: Liquid velocity. Right: Pressure.
The plots of liquid velocity and pressure are considered afte2.5, 7.5, and 10.0 s.

discontinuity). A good approximation of volume fraction contact discontinuities is a fur
damental and critical point for many interesting mass transport problems described by
model. Of particular interest are those contact discontinuities which separate a two-pt
region from a single-phase region. A crucial point is that the scheme should handle v
the transition from single-phase flow to two-phase flow without introducing oscillatior
in the neighborhood of the discontinuity because such oscillations would typically lead
negative masses.

We consider transport of a gas volume fraction contact discontinuity from left to rig
obtained by injecting a mixture of gas and liquid at the (left) inlet end. More precisel
initially the pipe is filled with stagnant liquid. The gas and liquid mass flow rates are i
creased to 0.02 kg/s and 3.0 kg/s, respectively, in 10 s. At the outlet boundary, the pres
is kept constant at 1 bar. For all schemes we use a CFL number of 1.2, and space discre
tion Ax = 20 m. The simulation results produced by the first-order schemes for FVS, V
Leer, and AUSM are shown in Figs. 8-10, while the performance of the correspond
second-order schemes are shown in Figs. 11-13. For the second-order schemes we us
Van Leer limiter to extrapolate the primitive variables, except for the pressure variab
for which we used only a first-order treatment. The extrapolation of the pressure varia
tended to introduce some slight oscillations in the liquid velocity.

LIQUID VELOCITY (m/s)

GAS VOLUME FRACTION

w 12

0 W 0 N 40 K0 60 00 &0 90 10 0 W 2 N 40 K0 60 0 &0 %0 100 0 W 2 30 M 80 %0 1000

) a0 50 60
LENGTH OF PIPE (1) LENGTH OF PIPE (1) LENGTH OF PIPE (1)

FIG. 8. First-order FVS. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The plots ar
considered after = 250 s.
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FIG. 9. First-order Van Leer. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The plot
are considered aftér= 250 s.

4.3.1. FVS and Van LeerThe first-order schemes of FVS and Van Leer give results th:
are very similar (Figs. 8 and 9). Most notably, both of them introduced an excessive smea
of the moving gas volume fraction contact discontinuity, which makes them unsuitable
typical mass transport simulation problems. In addition, both schemes tended to proc
some oscillations in the liquid velocity close to the outlet; see the middle plots of Figs. 8
9. The results produced by the second-order variants of the FVS and Van Leer scheme
shown in Figs. 11 and 12. We observe that these results are much better than the first-
approximation. However, the gas front is still smeared out to a large extent. The numer
dissipation seems to be especially strong in the pure liquid region on the right side
the front. In fact, from Figs. 11 and 12 (left plots) we see that there is some gas pres
throughout the whole pipeline which produces inaccuracy in the approximation of the fli
velocity as well (middle plots).

4.3.2. AUSM. From Fig. 10 we see thatthe first-order AUSM scheme performs very we
for this flow case. Also Fig. 13 demonstrates that the second-order AUSM scheme yie
an accurate and nonoscillatory resolution of the gas volume fraction contact discontin
as well as excellent approximations of fluid velocity and pressure with no tendency
oscillation are observed. Thus this scheme seems to be very suitable for flow cases w
the dynamics of mass transport is the main interest.

PRESSURE (bar)

LIQUID VELOGITY (m/s)

o N e S S S | . . . . . . . . .
0 10 20 N M0 0 60 T w0 w0 10 0 10 20 N M0 0 60 T0 w0 %0 100 0 10 0 M0 40 500 60 70 800 90 1000
LENGTH OF PPE (1) LENGTH OF PPE (1) LENGTH OF PIPE ()

FIG. 10. First-order AUSM. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The plot:
are considered aftér= 250 s.
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PRESSURE (bar)
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FIG. 11. Second-order FVS. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The plo
are considered aftér= 250 s.

4.3.3. Some remarks.The two-phase AUSM scheme presented in this paper seems
be a well-designed hybrid FVS/FDS scheme for simulation of mass flow dynamic (sl
transients) described by the current two-phase model. However, as observed in the se
test case, the AUSM scheme does not combine FVS and FDS in a way that enables
approximate well both propagation of sonic waves and stationary or moving contact disc
tinuities. This motivates us to try to design hybrid schemes that combine in a suitable way
best properties from the FVS and AUSM schemes. A first step in that direction is to loc:
the dissipative mechanisms of the various schemes. This is the purpose of the next sec

5. ANALYSIS OF THE NUMERICAL DISSIPATION MECHANISM

Two main observations were made from the numerical experiments of the previc
section:

e The AUSM scheme treats steady and moving contact discontinuities accurately.
e The FVS scheme is able to capture acoustic waves in a monotone and accurate w

Now, we seek to obtain analytical expressions for the numerical fluxes corresponding to
various schemes. In particular, we want to identify what is a “good” numerical flux for the a
curate and robust approximation of contact discontinuities that are steady as well as moy

PRESSURE (bar)

LIQUID VELOCITY (=)

0 10 a0 N 40 0 &0 0 B0 0 1000 0 W 20 N M0 0 60 M &0 %0 100 0 100 20 30 40 50 60 700 80 %0 1000
LENGTH OF PIE (1) LENGTH OF PIE (1) LENGTH OF PIPE (m)

FIG. 12. Second-order Van Leer. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. Th
plots are considered aftee= 250 s.
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FIG.13. Second-order AUSM. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The plot
are considered aftér= 250 s.

5.1. Dissipative Mechanism of the Three Schemes

From (21) it follows directly that the AUSM mass flux can be written in the viscous forr

(ko)L + (kPR }dAUSM

(akpkvk)hq/z Uk, j+1/2 2 K, j+1/2
AU, — | B K| (36)
ko2 = |k j41/2|((@xp)r — (axoi0L) =19,

wherevy j 112 = VT (v L, Cj41/2) + V7~ (vk R, Cj+1/2). By comparing (19) and the defini-
tion of ® with (28) and the definition o¥, we see that the mass flux of FVS and Van Leel
coincide. In particular, the FVS (and Van Leer) mass flux can be expressed as

(vkako)L + (vkokp)r - 1 pys
(ckPRv) Y172 = 5 — 50iT172

(37)
47 Y312 = IVI(ver Cj1/2) (@kpOr — IV (vkL. Cars2) (k)L k=1, g,

where|V|(v,c) = VT (v, c) — V™ (v, ). This follows from the following arguments. The
mass flux of FVS (and Van Leer) is given by

(akpxvi)j+12 = @ILVISL + @IrRVkr  k=1.0, (38)
wherea = ap and
Vil =V (uL Ciga2). ViR =V (kR Cjvar2).
Now, we make use of the relation (23) and rewrite (38) as
(akpkvi) j+172 = (@IL (kL — Vi) + (@) Rk R — Vi(R)- (39)
Adding expressions (38) and (39) fa@rypkvi)j+1/2 yields

At —; G *([VkJ,rR — Vicrl @R — [VilL — Vil l@w).

(akPkVK) j+1/2 =

and (37) follows.
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5.2. Numerical Dissipation at Steady and Moving Contact Discontinuities

First, we assume that we have a moving gas volume contact discontinuity where
pPL=Pr= P, VgL = Vg,R = Vg, UL=vRrR=Uv, QagL#Eagr (40)
Hence, it follows from (36) that the mass flux of the AUSM scheme becoknesl ( g)

kL +oKR

. (41)

[vkl ok

AUSM O R — Ok L vkpkak, L If ve > 0
(kKUK 12 = VkPK — =

2 vkpkak R Otherwise
where we have used
vk j+12 = V(v Cjr12) + V7 (ks Cjaa2) =

due to the property (23). In particular, for a steady contact discontinuity whese0 we
see that the AUSM scheme has vanishing numerical dissipation, i.e.,

(ekpkve) i3 = 0. (42)
Next, let us consider the FVS (Van Leer) scheme. First, we observe that

[v] lv] > C
IV|(v,¢) = _ 43
%[%2 + c} otherwise (43)

Hence, from (37) and (40) it follows that the mass flux of the FVS (Van Leer) scheme 1
|vk| < ¢ becomes

Kk, R — Ok, L
+ Cj+1/2) Pk — 5

(akokvi) Y32 = vk -3 (44)

oL +akr 1 v,f
2 2

Cj+1/2

for k =1, g. In particular, for a stationary contact discontinuity the FVS mass flux assigl
a numerical dissipation given by

Ok R — Ok, L
(akpkvk)'j:X?/Z = _Cj+1/2,0kf # 0. (45)

Inview of the analytical expressions for the dissipation mechanism of the various scher
given above, we can explain the results of the numerical experiments in Section 4
follows:

e AUSM has vanishing dissipation for a stationary gas volume fraction contact discor
nuity while FVS and Van Leer introduce a numerical dissipation given by (45). In particulz
this numerical dissipation depends on the sound velocity of the two-phase mixture. The
ference between these two mass fluxes was clearly observed in the numerical exampg
Section 4.2 (see left plots of Figs. 4-6).

e In the example presented in Section 4.3, the FVS and Van Leer schemes gave
excessive numerical dissipation for a moving gas volume fraction contact discontinu
The smearing out effect was especially strong on the side of the gas front adjacent tc
pure liquid region; see left plots of Figs. 8-9 and Figs. 11-12. The explanation of tl
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phenomenon lies in the viscous term of (44) whose value depends directly on the sc
velocity ¢;j41/2, which is much higher in the pure liquid regiog; {1, = 1000 m/s) than

in the two-phase region (typically; 11,2 < 50 m/s). On the other hand, (41) shows that
the viscous term of the AUSM flux depends on the fluid velocity for a moving gas volun
fraction contact discontinuity.

e The shock tube example of Section 4.1 revealed no essential difference among
various schemes. In particular, the approximation of the gas volume fraction contact
continuity (the middle discontinuity shown in the left plots of Figs. 1-3) exhibits simils
behavior, with the AUSM approximation being slightly sharper. This is because the sot
velocity for the two-phase mixture for this example is less than 30 m/s throughout the wh
pipeline, while the liquid velocity is about 8 m/s. Consequently, the dissipation terms
the mass fluxes corresponding to the AUSM and FVS (and Van Leer) schemes are not
different in strength.

6. REMOVAL OF NUMERICAL DISSIPATION AT CONTACT DISCONTINUITIES

As observed above, a main drawback of FVS and Van Leer is the excessive num
cal dissipation at volume fraction contact discontinuities. Now we seek to eliminate tl
dissipation following ideas described in [24] for Euler equations.

6.1. AUSMD and AUSMV

Using an idea similar to the one applied by Wada and Liou [24] for Euler equations \
suggest replacing the velocity-splitting functiod$ by a more general paV*. More
precisely, forlv| < c we defineV* as a convex combination &* and(v % |v|)/2, that is

xVE@. O+ 1 — )5 vl<c

VE@, ¢, x) = 1 . (46)
ACESI) otherwise

An important feature of the paﬁ/i is that it still satisfies the property (23), i.e.,

Vi, e, x)+V-(w,c)=v VY . (47)
Now we define two new schemes denoted as AUSMV and AUSMD by replatirigy V=
in the definition of the convective flux part of the FVS and Van Leer scheme respective
The pressure terif, is treated as before. In fact, the parameteiefines a whole family of
AUSMV and AUSMD schemes and in the following we will specify hgwean be chosen
to obtain “good” numerical fluxes with respect to the accurate approximation of steady ¢

moving contact discontinuities.
First, we observe that the mass flux of AUSMV (and AUSMD) now is given by

(@pv)ji1/2 = (@p) Vi + (@p)rVR, (48)
where

\7J|_r = \7+(UL, Cj+1/2, XL), \7E = \7_(UR, Cj+1/2, XR)- (49)
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For simplicity, we have omitted the subscriplenoting the two phases. Since the property
(47) still holds, we can show by the same arguments as above that the numerical mass
of AUSMV (and AUSMD) is given by (37) where the viscous tedﬁj{ls/z now is replaced

by

ffls/'\zﬂv = |\7|(UR, Cj+1/2: XR) (@0)R — |\7|(v|_, Ci+1/2: XL)(@p)L, (50)
where
VI, ¢, x) =V, ¢ x) =V (¢ x) =xIVIwc) +@—-xlvl, (51

where|V|(v, c) = V* (v, c) — V™ (v, c) as before. In particular, we observe tht con-
sists of two terms. In the following, we will see that the purpose of the first one is to enal
us to choose such that vanishing dissipation is obtained for a steady gas volume fracti
contact discontinuity. Moreover, the second term ensures that the AUSM mass flux (41
recovered for a moving gas volume fraction contact discontinuity.

Thus, the purpose now is to specify the paramejgrsyr in (50) such that the mass
flux of the FVS (and Van Leer) scheme takes the same form as the mass flux of AUSN
a stationary and moving gas volume fraction contact discontinuity.

6.1.1. Stationary contact discontinuityfor a stationary volume fraction contact discon-
tinuity (40) wherev = 0, we see that (50) becomes

MY = IVI(0. Cj112. xr) (@p)r — V(0. Cj /2, xL) (@)L

= xrIVI(0, €j11/2) (@p)r — xLIVI(0, Cj41/2) (ap)L
= [V[(0, ¢j11/2) p(P) [ xreR — xLaL]. (52)

Consequently, by choosing , xr such that
Xror — xLo =0 (53)
for both phases, no numerical dissipation is introduced in the mass fluxes at the ste

contact discontinuity.

6.1.2. Moving contact discontinuityFor a moving volume fraction contact discontinuity
(40) withv # 0 we see that (50) becomes

s’ = IVI(v. €12, xr) (@p)r — V] (v, G172, XL ) (@p)L

= (xrIVI(v, ¢j11/2) + (L= xR)vD(@p)r — (XLIVI(, Cj11/2)
+ (1 — xOvD(ap)L
= |v|p(pP)[ar — ar], (54)

where we have used (53). Consequently, in view of (37), (50), and (54) the mass f
becomes

aL +aR
(@p)35)s" = vo(P)——

1
— slvlp(Plar —oL]. (55)
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FIG. 14. First-order AUSMD. Left: Gas volume fraction after= 7.5 s. Middle: Liquid velocity. Right:
Pressure. The plots of liquid velocity and pressure are considered aftrs, 7.5, and 10.0 s.

In other words, the AUSM mass flux (41) is recovered. Many different choices can be m:
for x., xr such that (53) is satisfied. Here we simply use

XL = OR, XR=0QL. (56)

Hence, in the following, AUSMV denotes the FVS scheme where the velocity splittir
functionsV* have been replaced i in the convective flux part as described by (48) anc
(49), together with weighting functiong , xr given by (56). Similarly, AUSMD is the Van
Leer scheme wheé= together with (56) have replaced the original splitting functigrs

Remark5. Many choices for the weighting functiong , xgr can be made such that
(53) holds. While our choice (56) works for the present isothermal two-phase mode
more sophisticated choice, where more conditions are imposed, must be made for
nonisothermal case. However, such modifications should be possible to obtain by combil
the above approach with ideas previously used for Euler equations [24].

7. MORE NUMERICAL EXPERIMENTS

In this section we revisit the two flow cases we studied in Sections 4.2 and 4.3 ¢
investigate the performance of the two hybrid FVS/FDS schemes denoted as AUSMD
AUSMV. In addition, we do some further testing of AUSMV.

005|
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FIG. 15. First-order AUSMV. Left: Gas volume fraction aftér= 7.5 s. Middle: Liquid velocity. Right:
Pressure. The plots of liquid velocity and pressure are considered aftgr5, 7.5, and 10.0 s.
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FIG. 16. Second-order AUSMV. Left: Gas volume fraction after 7.5 s. Middle: Liquid velocity. Right:
Pressure. The plots of liquid velocity and pressure are considered aft@rs, 7.5, and 10.0 s.

7.1. Fast Transients

Figure 14 shows the performance of AUSMD for the fast transient flow case. In particul
we see that AUSMD has vanishing dissipation for the stationary gas volume fraction cont
discontinuity, similar to AUSM, see Fig. 6. However, severe oscillations (though slight
weaker than for AUSM) are introduced in liquid velocity and pressure, demonstrating t
the dissipation provided in AUSMD is not strong enough to ensure a steady shock struc
for this flow case.

The necessity of an FVS type of dissipation mechanism to ensure a steady shock strut
for the pressure pulse example is demonstrated in Fig. 15. The plots show that the first-o
AUSMV scheme is able to capture the velocity and pressure waves in a monotone
accurate way (a minor overshoot is observed at time2.5) before the moving sonic
waves enter the gas-dominated regiox at 750 m as well as after that, when reflecting
waves are produced. The performance of the second-order AUSMV is shown in Fig. 16.°
success of AUSMV is due to the fact that the scheme has a FVS type dissipation mechal
which keeps a steady shock structure as well as a vanishing dissipation at the stationar’
volume fraction contact discontinuity.

GAS VOLUME FRACTION
LIQUID VELOCITY (m/s)

0 W 20 N 40 K0 60 700 &0 90 100 0 W 2 N 40 K0 60 0 &0 %0 100 0 W 2 30 M 80 %0 1000

) a0 50 60
LENGTH OF PIPE (1) LENGTH OF PIPE (1) LENGTH OF PIPE (1)

FIG. 17. First-order AUSMD. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The plots
are considered after= 250 s.
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FIG. 18. First-order AUSMV. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The plots
are considered aftér= 250 s.

7.2. Slow Transients

The first- and second-order AUSMD (Figs. 17 and 19) and AUSMV (Figs. 18 and 2
give results that are very similar. Most notably, they both remove the excessive smearin
the moving gas volume fraction contact discontinuity associated with the FVS and Van L
schemes. Both AUSMD and AUSMV produce results comparable with those of AUSI
compare with Figs. 10 and 13.

7.3. Comparison between AUSMV and a Roe Scheme

The objective of the following numerical test is to gain more insight into the approx
mation properties of the AUSMV scheme. For that purpose, we compare the performa
of the first-order AUSMYV with that of the first-order of a fully numerical Roe solver. Thi
Roe scheme has previously been tested for the current two-phase model [11, 17]. The
scheme is known to be very accurate in the resolution of contact discontinuities. All 1
presented results have been achieved using the same flow conditions as given in Sectiol
and 4.3.

Figure 21 shows the comparison between the first-order AUSMV and the Roe scheme
the pressure pulse example of Section 4.2, where we used a finexgedl.0 m. Figure 22
shows the comparison between the first-order AUSMV and the Roe scheme for the n

P U S S SR | L L L L . I . . L
0 10 a0 3 40 S0 60 T 80 S0 100 0 WM 20 N 40 0 60 0 80 90 1000 0 00 20 I 40 S0 60 700 80 90 1000
LENGTH OF PIPE (1) LENGTH OF PIPE (1) LENGTH OF PIPE (m)

FIG. 19. Second-order AUSMD. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. Thi
plots are considered aftee= 250 s.
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FIG. 20. Second-order AUSMV. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The
plots are considered aftee= 250 s.

transport example of Section 4.3 using a fine gkid = 2.5 m. The results produced by
the two schemes are in very good agreement. In particular, the results indicate that
AUSMYV scheme is comparable with the much more expensive fully numerical Roe sche
with respect to accuracy. This test also justifies our use of the AUSMV scheme to gene
reference solutions for the flow cases presented in this paper.

7.4. Flow with Unequal Phase Velocity

The objective of this numerical example is twofold. First, we want to check the perfc
mance of AUSMV on a mass transport example involving unequal fluid velocities. Secol
we want to demonstrate that AUSMV works well using only a rough estimate of the tw
phase sound velocity given by

w2 = p

= 57
ago (1 —ag) )

which is the sound velocity corresponding to the equal phase velocity mide! 1,
S=0).

— — —— T —— 11 ——
— -Roe — -Roe —-Roe
— AUSWY — AUSWV — AUSMV

005|

2

PRESSURE (bar)

GAS VOLUME FRACTION

LIQUID VELOCITY (m/s)

. . 1 LN I I . . . . I L I I I . .
i

a0 w0 1000 0 100 20 30 40 50 60 00 80 90 1000 0 10 20 30 40 50 60 700 80 %0 1000

LENGTH OF PIPE () LENTH OF PIPE ()

L e

FIG. 21. Comparison of AUSMV and Roe (first order). Left: Gas volume fraction at time7.5 s. Middle:
Liquid velocity. Right: Pressure. The plots of liquid velocity and pressure are considered &fb, 7.5, and
10.0s;Ax =1.0m.
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T T T T T T T T T T
—Roe o ~Roe
— AUSWV — AUV — AUSWY
09| 2|
155|
08| 26|
. 151 24|
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GAS VOLUME FRACTION

L L L L 1 L . . . L . L il L . L L . . I
60 70 80 %0 100 0 0 A0 30 60 00 80 %0 1000 0 0 w0 W 60 700 80 %0 1000

0 W A0 I A0 50 W 50 w50
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FIG. 22. Comparison of AUSMV and Roe (first order). Left: Gas volume fraction. Middle: Liquid velocity.
Right: Pressure. The plots are considered after250 s;Ax = 2.5 m.

We consider the mass transport example of Section 4.3 using the slip (R with.2 and
S = 0.5. First, we solved with AUSMYV, using (26) together with (13) to estimate the sour
velocity for the two-phase mixture. The solutions are shown in Fig. 23. Then we compu
the solution with AUSMV using (57) in (26). We observed no difference between these t
approximations, and we have not plotted the results of this last computation.

This indicates that we might replace the slip law (5) by a more general hydrodynar
model which determines the slip between the fluid velocities, while still using the no-s
sound velocityw given by (57) to obtain a rough estimate for the sound velocity to be us
in the AUSMV scheme.

LIQUIB VELOCITY (m/s)

0 M0 W I M0 S0 60 70 ) w0 10w 0 w0 a w0 W B0 W0 100

o )
LENGTH OF PIPE () LENGTH OF PIPE ()
28]
29
26
28]
24
21
g, <22
£24 H
: ¢
825 2]
i o
g
; g
< 24] Q18]
§
2 1
22| 14
2 12

0 10 a0 W W0 S0 60 70 8 %0 100 0 0 aw W 40 SO &0 70 @ w0 1m0
LENGTH OF PPE (1) LENTH OF PPE ()

FIG.23. Second-order AUSMV. Top: Gas volume fraction (left); liquid velocity (right). Bottom: Gas velocity
(left); pressure (right). The plots are considered dfter250 s.



700 EVJE AND FJELDE

8. CONCLUSION

In this paper we have explored different flux-splitting schemes, based on the idea of c
bining flux-vector splitting (FVS) and flux-difference splitting (FDS), for a one-dimensioné
two-phase model for unsteady compressible liquid and gas flow. This model is more c«
plex than the Euler equations since the flux cannot be expressed in terms of its conserv.
variables, hence Jacobians must be calculated numerically, which leads to time-consut
algorithms. This makes it attractive to use methods based on scalar calculations suc
flux-vector-splitting schemes. In particular, we propose an FVS, a Van Leer, and an AU
type scheme by considering natural extensions of ideas applied for Euler equations. We |
demonstrated that the FVS scheme is able to capture fast-propagating acoustic wav
pressure and fluid velocity, while it strongly smears volume fraction contact discontinuiti
On the other hand, the AUSM type scheme gives accurate resolution of such volume f
tion contact discontinuities, while it cannot produce monotone approximations of fast so
waves in pressure and fluid velocity. In particular, we have proposed a hybrid FVS/FI
scheme, denoted as AUSMYV, which combines AUSM and FVS such that accurate soluti
are obtained both for fast-moving sonic waves and contact discontinuities. Based on
investigations, we believe that such a hybrid scheme has the potential to become a sui
tool to describe various transport problems described by the current two-phase model.
thermore, we also believe that ideas presented in this paper can be extended to more ge
two-fluid models. Such investigations are now in progress.
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