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In this paper we deal with the construction of hybrid flux-vector-splitting (FVS)
schemes and flux-difference-splitting (FDS) schemes for a two-phase model for one-
dimensional flow. The model consists of two mass conservation equations (one for
each phase) and a common momentum equation. The complexity of this model, as
far as numerical computation is concerned, is related to the fact that the flux can-
not be expressed in terms of its conservative variables. This is the motivation for
studying numerical schemes which are not based on (approximate) Riemann solvers
and/or calculations of Jacobian matrix. This work concerns the extension of an FVS
type scheme, a Van Leer type scheme, and an advection upstream splitting method
(AUSM) type scheme to the current two-phase model. Our schemes are obtained
through natural extensions of corresponding schemes studied by Y. Wada and M.-S.
Liou (1997,SIAM J. Sci. Comput.18, 633–657) for Euler equations. We explore the
various schemes for flow cases which involve both fast and slow transients. In particu-
lar, we demonstrate that the FVS scheme is able to capture fast-propagating acoustic
waves in a monotone way, while it introduces an excessive numerical dissipation
at volume fraction contact (steady and moving) discontinuities. On the other hand,
the AUSM scheme gives accurate resolution of contact discontinuities but produces
oscillatory approximations of acoustic waves. This motivates us to propose other
hybrid FVS/FDS schemes obtained by removing numerical dissipation at contact
discontinuities in the FVS and Van Leer schemes.c© 2002 Elsevier Science (USA)

Key Words:two-phase flow; hyperbolic system of conservation laws; flux-vector
splitting; flux-difference splitting; hybrid scheme; numerical dissipation.

1. INTRODUCTION

A recent trend in the development of upwind schemes has been to construct hybrid
flux-difference-splitting (FDS) and flux-vector-splitting (FVS) schemes where one tries to
combine the accuracy of FDS in the resolution of contact discontinuities and the robustness
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of FVS in the capturing of stronger discontinuities. For an overview of different imple-
mentations of such ideas for calculation of single-phase inviscid flow (Euler equations) as
well as viscous flow (Navier–Stokes) we refer to [7] and references therein. The purpose of
this work is to explore such approaches for a two-phase model used to simulate unsteady
compressible liquid and gas flow in pipes.

The unsteady two-phase simulation represents an important tool for gaining insight into
flow processes where oil and gas are transported simultaneously out of a reservoir. To design
and operate such transport systems, flow rate and pressure fluctuations must be predicted
with good accuracy. Such fluctuations typically arise due to a combination of operating
conditions and the two-phase nature. The two-phase model we explore in this work is
written in the following conservative vector form:

∂t

 αlρl

αgρg

αlρlvl + αgρgvg

+ ∂x

 αlρlvl

αgρgvg

αlρlv
2
l + αgρgv

2
g + p

=
 0

0
−q

. (1)

The model assumes isothermal conditions, and the unknowns areρl , ρg the liquid and gas
densities,αl , αg the volume fractions of liquid and gas,vl , vg the velocities of liquid and
gas,p the common pressure for liquid and gas, andq a source term. The system is a one-
dimensional two-phase model of the drift-flux type. Since the momentum is given only
for the mixture, we need an additional closure law, a so-called hydrodynamic closure law,
which connects the two-phase velocities. More generally, this law should be able to take
into account different flow regimes. In addition, we need a thermodynamic equilibrium
model which specifies the fluid properties. For more details related to the current two-phase
model we refer to [1, 9, 10, 17, 20].

Due to the complexity of the hydrodynamic and thermodynamic models, we cannot
expect to have an analytical expression for the physical fluxF(w) associated with Eq. (1)
in terms of its conservative variablesw [9, 15, 17]. In general, it is therefore difficult to
use more classical numerical schemes such as the Godunov or Roe schemes which are
based on an algebraic given Riemann solver. For works dealing with numerical schemes
for the present two-phase model we refer to Masellaet al. [15], Romate [17], Faille and
Heintze [9], Fjelde and Karlsen [11], and Evje and Fjelde [8]. The crucial point is that
we have no analytical expression for the Jacobian matrix, hence this must generally be
computed numerically. Therefore, the potential gain in terms of computation time by using
sequential-based methods like hybrid FVS/FDS schemes becomes a much more important
aspect for the current two-phase model than for the Euler equations. This fact has been a
main motivation for exploring how to extend hybrid FVS/FDS type discretization techniques
to the present two-phase model. Through these investigations we also seek to obtain insight
into discretization techniques that can be applied to more general two-phase models as well,
i.e. two-fluid models where a set of equations for each phase must be considered.

At this point we recall some general facts regarding FVS versus FDS schemes. Up to
now several basic upwind schemes have been proposed, and most of them are categorized
as either FDS or FVS. The former is based on using an exact or approximate solution of the
local Riemann problem, while the latter typically splits the flux vector into upstream and
downstream traveling components according to the sign of its eigenvalues. More precisely,
in FVS, the flux functionF is divided into positive and negative parts,

F(w) = F−(w)+ F+(w),
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which give the numerical flux at the cell interface( j + 1/2) between the stateswL andwR

by considering

Fj+1/2(wL ,wR) = F+(wL)+ F−(wR). (2)

FDS is based on matrix calculations, while FVS is based on scalar calculations. Conse-
quently, FVS is more efficient than FDS; however, it introduces excessive numerical dissi-
pation. During the past few years much of research has been done on the Euler equations
motivated by the desire to combine the efficiency of FVS and the accuracy of FDS. The idea
is to eliminate surplus dissipation of the FVS by introducing the flavor of the FDS into FVS
schemes. These schemes are not FVS anymore since their numerical flux typically cannot
be expressed in the splitting form (2). They are a hybrid of FVS and FDS. We refer to [24]
and [7] for nice overviews of different FDS and FVS schemes as well as hybrid FVS/FDS
schemes studied for the Euler and Navier–Stokes equations.

In this paper we are interested in extending some flux-splitting schemes previously inves-
tigated for Euler and Navier–Stokes calculations to solve for unsteady compressible liquid
and gas flow in a pipe. In particular, we consider the performance of an FVS type scheme,
a Van Leer type scheme, and an advection upstream splitting method (AUSM) type scheme
for the current two-phase model. Our schemes are obtained through natural extensions of
corresponding single-phase schemes proposed by Wada and Liou [24] for Euler equations.
We demonstrate that FVS is able to capture propagation of stronger discontinuities in a
monotone way, while it introduces an excessive numerical dissipation at volume fraction
contact (steady and moving) discontinuities. AUSM, on the other hand, gives accurate reso-
lution of contact discontinuities, but produces highly oscillatory approximations for stronger
discontinuities. This motivates us to propose other hybrid FVS/FDS schemes obtained by
removing dissipation in the FVS and Van Leer schemes at contact discontinuities.

One such approach is based on modifying the velocity-flux-splitting formulas associated
with these schemes such that they yield vanishing numerical dissipation for a stationary
volume fraction contact discontinuity while they produce a mass flux similar to that of
AUSM for a moving volume fraction contact discontinuity. This idea is explored for the
FVS and Van Leer schemes and gives rise to two corresponding schemes denoted as AUSMV
and AUSMD (motivated by the notation used in [24]).

The rest of this paper is organized as follows: In Section 2 we give a more detailed
presentation of the two-phase model we want to solve. In Section 3 we present three different
flux-splitting schemes for the two-phase model, an FVS, a Van Leer and an AUSM type
scheme. In Section 4 we consider the performance of these schemes for three different flow
cases. We make some observations concerning the dissipation mechanism of the various
schemes in Section 5. Then, in Section 6 we suggest an approach for removing excessive
dissipation. Finally, in Section 7 we revisit flow cases studied in Section 4 and do more
testing of the AUSMV scheme.

2. THE TWO-PHASE MODEL

The numerical simulation of two-phase flow is a challenging mathematical and industrial
research area. The complete local description of such flows is very complex and an averag-
ing technique is used to derive models suitable for computation [6, 13]. When motions of
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the two phases are strongly coupled, the relative velocity of the two-fluid system is small
and a simplified model can be obtained which consists of a system of conservation laws for
the mass, momentum, and energy balance equations for the gas–liquid mixture. However,
such mixture models (homogeneous equilibrium models) are inefficient when the kinematic
disequilibrium becomes significant. For such cases a set of equations for each phase must
be considered, which leads to so-called two-fluid models. Significant research activity re-
lated to the study of upwind type schemes and their extensions to different variants of the
two-fluid model has taken place over the last 10 years; see [2–4, 5, 12, 18, 21, 22] and
references therein.

For isothermal flow, one version of the basic one-dimensional two-fluid system is the
following model:

∂t [αlρl ] + ∂x[αlρlvl ] = 0l

∂t [αgρg] + ∂x[αgρgvg] = 0g
(3)

∂t [αlρlvl ] + ∂x
[
αlρlv

2
l

]+ αl ∂x p+ τl = M D
l + ql

∂t [αgρgvg] + ∂x
[
αgρgv

2
g

]+ αg∂x p+ τg = M D
g + qg.

The unknowns areρl , ρg the liquid and gas densities,αl , αg the volume fractions of liquid
and gas,vl , vg the velocities of liquid and gas, andp the common pressure for liquid
and gas.0l , 0g represent mass exchanges between the two phases,ql ,qg are source terms
representing frictional and gravity forces, whileM D

l = −M D
g are source terms reflecting

interphase drag. Finally,τl , τg are differential terms which are mathematically relevant
because they affect the well-posed nature of the system.

The above system is difficult to solve for several reasons: First, the system is not in con-
servation law form due to the pressure terms, and these terms must be carefully handled in
the presence of discontinuities, (see [5] for instance). Second, the source terms associated
with interphase drag are stiff, acting on a very short time scale. Typically, this can cause
problems in the numerical computation [16]. Third, upwinding requires some knowledge
of the eigenstructure of the Jacobian of the flux function corresponding to the above system.
In contrast to the case of single-phase and two-phase mixture flow models, it is much more
complicated to compute the eigenvalues and eigenvectors of the system due to complex
phasic interactive processes [2, 4, 5]. Finally, we should mention that the system might
fail to be hyperbolic. This can lead to an ill-posed problem which in turn might produce
oscillations in the numerical solutions.

Two-phase flow models are widely used within the petroleum industry to describe pro-
duction and transport of oil and gas through long pipelines as well as to evaluate the transient
responses of drilling operations. Due to the complexity of the two-fluid model, modelers
commonly use the simpler drift-flux model. This model is obtained from the two-fluid
model by adding together the respective liquid and gas momentum and energy equations
to produce mixture momentum and energy equations. Difficult terms related to phase in-
teractions cancel out, and the missing information is replaced by an empirical slip equation
which gives a relation between the phase velocities. Source terms related to mass trans-
fer, friction, and gravity are still present in the model. In addition, the equations are now
in conservative form. The drift-flux model has been shown to be hyperbolic, at least in a
physically reasonable region of parameters [1, 17]. In particular, for isothermal flow, the
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drift-flux model takes the form

∂t [αlρl ] + ∂x[αlρlvl ] = 0l

∂t [αgρg] + ∂x[αgρgvg] = 0g (4)

∂t [αlρlvl + αgρgvg] + ∂x
[
αlρlv

2
l + αgρgv

2
g + p

] = −q.

We now describe this model in more detail. First, we assume that there is no mass transfer
between the phases, hence

0l = 0g = 0.

Furthermore, for computational purposes we assume an analytical slip law of the form

vg = Kvmix + S, (5)

wherevmix = αlvl + αgvg is the mixture average velocity andK , S are flow-dependent
parameters. We assume that the liquid density has the form

ρl = ρl ,0+ p− pl ,0

a2
l

, (6)

whereal = 1000 m/s is the velocity of sound in the liquid phase andρl ,0 andpl ,0 are given
constants. Here we will assume thatρl ,0 = 1000 kg/m3 andpl ,0 = 1 bar. For the gas density,
we assume the form

ρg = p

a2
g

, (7)

whereag = 316 m/s is the velocity of sound in the gas phase. The volume fractions are
related by

αl + αg = 1.

Finally, for the source termq we have

q = Fw + Fg,

whereFg = g(αlρl + αgρg) sinθ represents the gravity whereg is the gravitational constant
andθ is the inclination. The viscous forces and forces between the wall and the fluids are
taken into account through the frictional force termFw given by the following simple model

Fw = 32vmixµmix

d2
, (8)

whered is the inner diameter and the mixed viscosityµmix is given by

µmix = αlµl + αgµg,

and the viscosity for liquid and gas are assumed to beµl = 5× 10−2 Pa s andµg = 5× 10−6

Pa s respectively.
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We can write the system (4) in the conservative vector form

∂tw+ ∂x F(w) = G(w), (9)

where

w=

 αlρl

αgρg

αlρlvl + αgρgvg

, F(w)=

 αlρlvl

αgρgvg

αlρlv
2
l + αgρgv

2
g + p

 ,

G(w)=
 0

0
−q

 . (10)

It can also be instructive to express the above system in the form

∂t

w1

w2

w3

+ ∂x

 vlw1

vgw2

v2
l w1+ v2

gw2+ p(w1, w2)

=
 0

0
−q

 , (11)

wherew1 = αlρl , w2 = αgρg, andw3=αlρlvl +αgρgvg. Note that pressurep= p(w1, w2)

is a passive variable obtained from the conservative variablesw1 andw2. This is used in the
numerical algorithms presented later. For a more comprehensive discussion of mathematical
properties of the drift-flux model we refer to [20] and [1]. Here we will just recall that under
the condition of incompressible liquid and when

αgρg ¿ αlρl , (12)

for two-phase regions whereαg ∈ (0, 1), the followingapproximativesound velocity has
been devised:

ω2 = p

αgρl (1− Kαg)
. (13)

The corresponding eigenvalues are given by

λ1 = vl − ω, λ2 = vg, λ3 = vl + ω. (14)

The first and third eigenvalues correspond to pressure pulses propagating downstream and
upstream while the second eigenvalue represents the wave speed of the gas volume wave
traveling downstream. For pure liquid regions (αg = 0) we have

λ1 = vl − al , λ3 = vl + al , (15)

whereal is the sound velocity of the liquid phase. These eigenvalues correspond to pressure
pulses propagating upstream and downstream. Similarly, for pure gas regions (αg = 1) we
have

λ1 = vg − ag, λ3 = vg + ag, (16)

whereag is the sound velocity of the gas phase:
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Remark 1. Note that the drift-flux model (4) and the two-fluid model (3) both consist
of two mass conservation equations. As far as accurate and robust calculation of contact
discontinuities is concerned, one might expect that the two models are closely interrelated.
Hence, by investigating numerical schemes for the drift-flux model we also seek insight
into the basic mechanisms relevant to developing accurate and robust numerical schemes
for the two-fluid model.

Remark 2. The analytical slip law (5) which describes the relation betweenvl andvg

can be replaced by more general models. In particular, for more realistic flows the slip
velocity between the two phases should be given by a hydrodynamical model that accounts
for the different flow regimes. Similarly, the models for fluid properties given by the density
models (6) and (7) should be replaced by more general thermodynamical models. However,
methods developed in this paper still apply. See Section 7.4 for more on this.

Remark 3. Regarding two-phase flow in pipelines, it is convenient to identify three
classes of physical phenomena which all work on different time scales [19]. These are
interphase exchanges, fluid transport, and propagation of pressure pulses (sonic waves).
This paper focuses on the last two phenomena. Concerning transport of gas and liquid, the
high compressibility of the gas phase relative to the liquid phase leads to a highly dynamic
process. The flow behavior will depend greatly on the pressure development in the pipeline
which in turn is determined by effects related to wall friction and hydrostatic conditions. On
the other hand, pressure pulses are mainly caused by inlet flow rate changes. These waves
have a characteristic time scale that is 10–100 times smaller than the transient behavior of
fluid transport. The pressure waves are usually small in magnitude and propagate as small
perturbations of the pressure generated by the dynamics of mass transport.

Remark 4. A notable fact is that the two-phase mixture has a much lower sonic velocity
than both pure liquid and gas. If we consider a plot of the sonic velocity as a function of
the gas volume fraction, we will see that the acoustic velocity changes very rapidly in the
“one-phase to two-phase” transition regions [10, 17]. Typically, the sound speed can be
several orders of magnitude higher in the liquid phase than in the two-phase mixture. This
gives rise to strong nonlinear effects.

3. FLUX-SPLITTING SCHEMES

Instead of discretizing the fluxF of (4) directly, we want to treat the convection and
pressure terms separately in the discretization procedure. The natural splitting of the total
flux into convective and pressure parts is given by

F = Fc + Fp=

 αlρlvl

αgρgvg

αlρlv
2
l + αgρgv

2
g

+
0

0
p

. (17)

A finer treatment of the convective flux can be taken by considering a further breakup as
follows:

Fc = Fc,l + Fc,g = αlρlvl

1
0
vl

+αgρgvg

 0
1
vg

. (18)

Based on this splitting we now describe three different numerical schemes.
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3.1. Two Hybrid FDS/FVS Schemes: AUSM and Van Leer

It is well known that there is an excessive dissipation at contact discontinuities associated
with FVS schemes. This will be demonstrated below for the current two-phase model. On
the other hand FDS schemes perform very well for contact discontinuities. This motivates
us to try to eliminate the surplus dissipation of the FVS by introducing the flavor of the FDS
into FVS schemes. Following [24] we now describe two such approaches. Basically, the
idea is to identify a suitable “convective speed” and then implement upwind principles in
the discretization of the convective terms. Starting with (17) and (18) we now focus on two
different constructions where this idea is carried out. In view of (18) a natural choice for
defining the interface convective speed is the mass fluxes(αlρlvl ) j+1/2 and(αgρgvg) j+1/2,
which provide the sign as well as value appropriate for upwinding. The numerical flux at
the interfacej + 1/2 can then be written as

Fj+1/2(wL ,wR) = 1

2

[
(αlρlvl ) j+1/2(Φl ,L +Φl ,R)−

∣∣(αlρlvl ) j+1/2

∣∣(Φl ,R−Φl ,L)
]

+ 1

2

[
(αgρgvg) j+1/2(Φg,L +Φg,R)−

∣∣(αgρgvg) j+1/2

∣∣
× (Φg,R−Φg,L)

]+ (Fp) j+1/2, (19)

whereΦl = (1, 0, vl )
T , Φg = (0, 1, vg)

T , and Fp = (0, 0, p)T . Here the interface mass
fluxes(αlρlvl ) j+1/2 and(αgρgvg) j+1/2 can be chosen in different ways. We follow along
the line of Wada and Liou [24], who considered single-phase flow, and propose the following
Van Leer and AUSM schemes for two-phase flow (we use the same discretization for both
phases).

• Van Leer type:

(αρv)Van Leer
j+1/2 = V+

(
vL , cj+1/2

)
αLρL + V−

(
vR, cj+1/2

)
αRρR. (20)

• AUSM type (U-splitting):

(αρv)AUSM
j+1/2 =

1

2

[
v j+1/2(αLρL + αRρR)−

∣∣v j+1/2

∣∣(αRρR− αLρR)
]
, (21)

wherev j+1/2 = v+L + v−R andv+L = V+(vL , cj+1/2) andv−R = V−(vR, cj+1/2). We observe
that since we use a common sound velocity, the AUSM M-splitting and U-splitting coincide.
Here the velocity-splitting formulasV± are defined by

V±(v, c) =
{± 1

4c(v ± c)2 if |v| ≤ c

1
2(v ± |v|) otherwise.

(22)

In particular, the splitting functionsV± satisfy the consistency condition

V+(v, c)+ V−(v, c) = v. (23)

For the pressure termFp, an FVS type discretization of the following form is used,

pj+1/2 = P+
(
vL , cj+1/2

)
pL + P−

(
vR, cj+1/2

)
pR, (24)
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wherev is a mixed fluid velocity, and the pressure-splitting formulasP± are given by

P±(v, c) = V±(v, c) ·
{ 1

c

(±2− v
c

)
if |v| ≤ c

1
v

otherwise.
(25)

For the definition of a sound velocitycassociated with the mixture, we obtain an approximate
sound velocity using the model

c(αg) =


al if αg<ε

ω if ε ≤ αg ≤ 1− ε
ag if αg> 1− ε,

(26)

whereω is given by (13) andε is a small parameter whose purpose is to ensure that
we have a smooth transition from a two-phase to a single-phase sound velocity. We have
usedε = 0.001 for all simulations presented in this work. We define a common speed
cj+1/2 associated with the interfacej + 1/2 which is an average ofcL andcR. Note that
a common sound speed has been used before for Euler equations for both AUSMDV [24]
and AUSM+ [14]. Following [24] we will use the choicec= max(cL , cR) in this work.
For the discretization of the pressure term occurring in the mixed momentum equation we
need a fluid velocity for the mixture of the two phases. One natural choice is to consider a
mixed fluid velocityvmix given by

v = vmix = αlvl + αgvg. (27)

This choice is motivated by the fact that for the flow cases we study in this work, it is
reasonable to assume that both phasic mass fluxes behave as if they are subsonic. The above
definition ofvmix ensures that the pressure term will be treated as subsonic as well. More
generally, one should also explore other choices which guarantee a consistent discretization
of the convective and pressure terms.

3.2. An FVS Scheme

We now briefly describe an FVS scheme for our two-phase model. The discretization of
the pressure term remains the same; for the convective terms, we use the discretization

FFVS
j+1/2(wL ,wR) = (αlρl )LΨ+l ,L + (αlρl )RΨ−l ,R+ (αgρg)LΨ+g,L

+ (αgρg)R9
−
g,R+ (Fp) j+1/2, (28)

whereFp = (0, 0, p)T and

Ψ+l ,L = Ψ+l
(
vl ,L , cj+1/2

)
, Ψ−l ,R = Ψ−l

(
vl ,R, cj+1/2

)
, (29)

where

Ψ+l (v, c) = V+(v, c)

1
0
v

, Ψ−l (v, c) = V−(v, c)

1
0
v

, (30)
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where the velocity-splitting formulasV± are given by (22). Similarly, we have for the gas
phase

9+g (v, c) = V+(v, c)

0
1
v

, 9−g (v, c) = V−(v, c)

0
1
v

, (31)

and

Ψ+g,L = Ψ+g
(
vg,L , cj+1/2

)
, Ψ−g,R = Ψ−g

(
vg,R, cj+1/2

)
. (32)

Note that this FVS scheme coincides with the Van Leer scheme for the mass conservation
equations, while the discretization of the mixed momentum equation is different. Finally,
we note that our scheme is really an FVS scheme since we can write the flux in the form

FFVS
j+1/2(w,w) = F−(w)+ F+(w), (33)

where

F−(w) = αlρl Ψ+l (vl , c)+ αgρgΨ+g (vg, c)+

 0
0

P+(vmix, c)

p

F+(w) = αlρl Ψ−l (vl , c)+ αgρgΨ−g (vg, c)+
 0

0
P−(vmix, c)

p.

Due to the relations

Ψ+l (v, c)+Ψ−l (v, c)=

 v0
v2

, Ψ+g (v, c)+Ψ−g (v, c)=
 0
v

v2

,
P+(v, c)+ P−(v, c) = 1,

we can conclude that (33) holds. In the following sections we will investigate some basic
properties possessed by the three schemes introduced above.

3.3. Extension to Second-Order Spatial and Temporal Accuracy

A second-order variant of the various schemes for the two-phase model is obtained by
using the classical MUSCL technique [23]. We choose to extrapolate the primitive variables
u = (αl , αg, ρl , ρg, vl , vg) (rather than the conservative variablesw). This is done according
to the formulas

uL := u j + 1x

2
S(D−u j , D+u j ), uR := u j+1− 1x

2
S(D−u j+1, D+u j+1), (34)

whereS(u, v) is the slope limiter. We have used the Van Leer limiter in the numerical
experiments. Second-order accuracy in time is obtained by using a two-stage Runge–Kutta
discretization.
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3.4. Boundary Treatment

Because of the hyperbolic nature of the model we are studying, it is important to treat
precisely the information going in and out of the system. The treatment of the boundary
conditions takes into account the information going out of the system through a set of
compatibility conditions. These are solved together with the imposed boundary conditions
using an upwind discretization. Considering the last two test cases studied in this work, we
specify some mass flow rates at the inlet of the pipeline, while keeping the pressure constant
at the outlet end. For more details we refer to [11].

4. SOME NUMERICAL EXAMPLES

The purpose of the numerical experiments is to reveal differences and similarities among
the three schemes developed above. In particular, we want to explore the ability of the
various schemes to produce monotone and accurate discontinuity profiles in pressure, fluid
velocities, and volume fraction. First, we consider a two-phase shock tube problem. Then,
we consider a flow case characterized by fast transients (propagation of sonic waves). In the
third example, we consider the slower transient of liquid and gas transport. In particular, we
wish to treat the most difficult case where one of the phases disappears. See also Remark 3
for more on various flow phenomena.

Since the discrete fluxes are treated explicitly in time, the schemes presented above are
subject to the (CFL) condition

1t = CFL
1x

max(|λ1|, |λ2|, |λ3|) , (35)

whereλi is given by (14), (15), and (16). For the first example we use the rough estimate
max(|λ1|, |λ2|, |λ3|)≈30, while for the last two we apply the estimate max(|λ1|, |λ2|, |λ3|)≈
1000. We also note that in the numerical algorithms, pressure is obtained as a passive vari-
able from the conservative variablesw1, w2. Generally, it is not possible to calculate any
analytical solution for the two-phase model. Consequently, for the various flow cases pre-
sented, we have computed a reference solution by using the AUSMV scheme described in
Section 6 on a fine grid.

4.1. Shock Tube Problem

Following [1, 11] we consider a slightly simplified model by assuming that the liquid
density is constantρl = 1000 kg/m3 and by neglecting the wall frictionFw. Furthermore,
we use the slip law (5) whereK = 1.07 andS= 0.216. A horizontal pipe of length 100 m
is considered, which initially is separated in a left and right state atx0 = 50 m. More
precisely, we assume the initial data

αg,L = 0.55, vl ,L = 10.370 m/s, pL = 80450 Pa

αg,R = 0.55, vl ,R = 0.561 m/s, pR = 24282 Pa.

For the numerical calculations we use CFL= 1.0 together with a space discretization
1x = 0.5 m. Simulation results for FVS, Van Leer, and AUSM are presented in Figs. 1–3.
We have plotted the gas volume fraction, liquid velocity, and pressure at timet = 1.0 s.
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FIG. 1. First-order FVS. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The plots are
considered aftert = 1.0 s.

The solution of this problem is composed of a 1-shock, a 2-contact, and a 3-shock. Since
our main interest is characteristic properties related to stability and accuracy of the various
schemes we have only computed first-order approximations.

We observe that the results obtained with all three schemes are in good agreement. We may
conclude that this flow problem reveals no essential difference among the three schemes.

4.2. Fast Transients—Propagation of Pressure Pulses

Next, we focus on an example with fast transients where fast-moving sonic (acoustic)
waves in pressure and fluid velocities occur. A similar test case was used in [11]. For our test
case we assume that we have a 1000-m-long pipe with diameter 10 cm. The first 750 m are
filled with 99% liquid and 1% gas while the last 250 m are filled with 10% liquid and 90%
gas. The pressure is initially 1 bar in the pipeline and the fluids are stagnant. For simplicity
we have considered the no-slip casevl = vg. We now introduce a pulse in pressure and fluid
velocities by increasing the inlet liquid rate from 0 to 0.3 kg/s in 0.0025 s. We use CFL
= 1.0 and a space discretization1x= 10 m. The first-order simulation results for FVS,
Van-Leer, and AUSM are shown in Figs. 4–6. Discontinuity waves are formed in pressure
and velocity which move with a sound velocity of approximately 100 m/s before they reach
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FIG. 2. First-order Van Leer. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The plots
are considered aftert = 1.0 s.
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FIG. 3. First-order AUSM. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The plots are
considered aftert = 1.0 s.

the gas-dominated region, where the sound velocity becomes approximately 30 m/s. When
these pulses experience the sudden change in the gas volume fraction located at 750 m the
changes in compressibility and sound velocity produce reflecting waves in pressure and
velocity, (see also Remark 4).

4.2.1. FVS and Van Leer.From Fig. 4 we observe that FVS has a very good ability to
produce nonoscillatory approximations of the acoustic waves in pressure and fluid velocity.
However, the approximation of the stationary gas volume fraction contact discontinuity is
poor (left plot). For that reason a strong loss of accuracy is seen in pressure and velocity
after the pulses have reached the gas-dominated region starting at 750 m. Discontinuities
in pressure and velocity are misplaced (see middle and right plots) as well as smeared out
because of the strong smearing of the gas volume contact discontinuity. Figure 5 shows that
the solution produced by the Van Leer scheme is close to the FVS scheme. However, we
see that the Van Leer scheme introduced a slight oscillation in pressure and velocity after
time t = 2.5 s (see middle and right plots).

4.2.2. AUSM. The AUSM scheme has vanishing numerical dissipation at the stationary
gas volume fraction contact discontinuity. This is clearly demonstrated in Fig. 6 (left plot).
However, AUSM produces a highly oscillatory approximation of the pressure and velocity
waves, which makes it unsuitable for accurate calculations of fast transients such as those
introduced in the current flow case.
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FIG. 4. First-order FVS. Left: Gas volume fraction aftert = 7.5 s. Middle: Liquid velocity. Right: Pressure.
The plots of liquid velocity and pressure are considered aftert = 2.5, 7.5, and 10.0 s.
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FIG. 5. First-order Van Leer. Left: Gas volume fraction aftert = 7.5 s. Middle: Liquid velocity. Right:
Pressure. The plots of liquid velocity and pressure are considered aftert = 2.5, 7.5, and 10.0 s.

4.2.3. Some remarks.Accurate and robust simulation of propagation of pulses in pres-
sure and fluid velocities is indeed a challenging task since it typically involves both disconti-
nuities where the gas–liquid mixture stays in a mechanical nonequilibrium state and volume
fraction contact discontinuities where the gas–liquid mixture stays in an equilibrium state.
It seems that of the three schemes, the FVS scheme has the best ability to capture strong
discontinuities. However, the dissipative mechanism of FVS is a “disaster” for stationary
volume fraction contact discontinuities. To demonstrate that this is a fundamental problem,
we calculated the solution by using a second-order variant of FVS where we used the Van
Leer slope limiter, see Fig. 7. Due to the smearing of the volume fraction contact disconti-
nuity, the propagating waves are still misplaced and a sharp “spike” is produced in the fluid
velocity after timet = 10 s. On the other hand, the dissipation provided in AUSM does
not seem, to be sufficient to deal with the mechanical nonequilibrium state discontinuity
of this test case; however, it handles stationary contact discontinuities without introducing
numerical diffusion.

4.3. Slow Transients—Transport of a Gas Volume Fraction Contact Discontinuity

Now we want to check the FVS, Van-Leer and AUSM schemes and their performance
on the transport of a slowly moving linear gas volume fraction wave (moving contact
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FIG. 6. First-order AUSM. Left: Gas volume fraction aftert = 7.5 s. Middle: Liquid velocity. Right: Pressure.
The plots of liquid velocity and pressure are considered aftert = 2.5, 7.5, and 10.0 s.
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FIG. 7. Second-order FVS. Left: Gas volume fraction aftert = 7.5 s. Middle: Liquid velocity. Right: Pressure.
The plots of liquid velocity and pressure are considered aftert = 2.5, 7.5, and 10.0 s.

discontinuity). A good approximation of volume fraction contact discontinuities is a fun-
damental and critical point for many interesting mass transport problems described by our
model. Of particular interest are those contact discontinuities which separate a two-phase
region from a single-phase region. A crucial point is that the scheme should handle well
the transition from single-phase flow to two-phase flow without introducing oscillations
in the neighborhood of the discontinuity because such oscillations would typically lead to
negative masses.

We consider transport of a gas volume fraction contact discontinuity from left to right
obtained by injecting a mixture of gas and liquid at the (left) inlet end. More precisely,
initially the pipe is filled with stagnant liquid. The gas and liquid mass flow rates are in-
creased to 0.02 kg/s and 3.0 kg/s, respectively, in 10 s. At the outlet boundary, the pressure
is kept constant at 1 bar. For all schemes we use a CFL number of 1.2, and space discretiza-
tion1x = 20 m. The simulation results produced by the first-order schemes for FVS, Van
Leer, and AUSM are shown in Figs. 8–10, while the performance of the corresponding
second-order schemes are shown in Figs. 11–13. For the second-order schemes we used the
Van Leer limiter to extrapolate the primitive variables, except for the pressure variable,
for which we used only a first-order treatment. The extrapolation of the pressure variable
tended to introduce some slight oscillations in the liquid velocity.
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FIG. 8. First-order FVS. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The plots are
considered aftert = 250 s.
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FIG. 9. First-order Van Leer. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The plots
are considered aftert = 250 s.

4.3.1. FVS and Van Leer.The first-order schemes of FVS and Van Leer give results that
are very similar (Figs. 8 and 9). Most notably, both of them introduced an excessive smearing
of the moving gas volume fraction contact discontinuity, which makes them unsuitable for
typical mass transport simulation problems. In addition, both schemes tended to produce
some oscillations in the liquid velocity close to the outlet; see the middle plots of Figs. 8 and
9. The results produced by the second-order variants of the FVS and Van Leer schemes are
shown in Figs. 11 and 12. We observe that these results are much better than the first-order
approximation. However, the gas front is still smeared out to a large extent. The numerical
dissipation seems to be especially strong in the pure liquid region on the right side of
the front. In fact, from Figs. 11 and 12 (left plots) we see that there is some gas present
throughout the whole pipeline which produces inaccuracy in the approximation of the fluid
velocity as well (middle plots).

4.3.2. AUSM. From Fig. 10 we see that the first-order AUSM scheme performs very well
for this flow case. Also Fig. 13 demonstrates that the second-order AUSM scheme yields
an accurate and nonoscillatory resolution of the gas volume fraction contact discontinuity
as well as excellent approximations of fluid velocity and pressure with no tendency to
oscillation are observed. Thus this scheme seems to be very suitable for flow cases where
the dynamics of mass transport is the main interest.
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FIG. 10. First-order AUSM. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The plots
are considered aftert = 250 s.
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FIG. 11. Second-order FVS. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The plots
are considered aftert = 250 s.

4.3.3. Some remarks.The two-phase AUSM scheme presented in this paper seems to
be a well-designed hybrid FVS/FDS scheme for simulation of mass flow dynamic (slow
transients) described by the current two-phase model. However, as observed in the second
test case, the AUSM scheme does not combine FVS and FDS in a way that enables it to
approximate well both propagation of sonic waves and stationary or moving contact discon-
tinuities. This motivates us to try to design hybrid schemes that combine in a suitable way the
best properties from the FVS and AUSM schemes. A first step in that direction is to locate
the dissipative mechanisms of the various schemes. This is the purpose of the next section.

5. ANALYSIS OF THE NUMERICAL DISSIPATION MECHANISM

Two main observations were made from the numerical experiments of the previous
section:

• The AUSM scheme treats steady and moving contact discontinuities accurately.
• The FVS scheme is able to capture acoustic waves in a monotone and accurate way.

Now, we seek to obtain analytical expressions for the numerical fluxes corresponding to the
various schemes. In particular, we want to identify what is a “good” numerical flux for the ac-
curate and robust approximation of contact discontinuities that are steady as well as moving.
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FIG. 12. Second-order Van Leer. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The
plots are considered aftert = 250 s.
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FIG. 13. Second-order AUSM. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The plots
are considered aftert = 250 s.

5.1. Dissipative Mechanism of the Three Schemes

From (21) it follows directly that the AUSM mass flux can be written in the viscous form

(αkρkvk)
AUSM
j+1/2 = vk, j+1/2

(αkρk)L + (αkρk)R

2
− 1

2
dAUSM

k, j+1/2
(36)

dAUSM
k, j+1/2 =

∣∣vk, j+1/2

∣∣((αkρk)R− (αkρk)L) k = l , g,

wherevk, j+1/2 = V+(vk,L , cj+1/2)+ V−(vk,R, cj+1/2). By comparing (19) and the defini-
tion of Φ with (28) and the definition ofΨ, we see that the mass flux of FVS and Van Leer
coincide. In particular, the FVS (and Van Leer) mass flux can be expressed as

(αkρkvk)
FVS
j+1/2 =

(vkαkρk)L + (vkαkρk)R

2
− 1

2
dFVS

k, j+1/2

(37)
dFVS

k, j+1/2 = |V |
(
vk,R, cj+1/2

)
(αkρk)R− |V |

(
vk,L , cj+1/2

)
(αkρk)L k= l , g,

where|V |(v, c) = V+(v, c)− V−(v, c). This follows from the following arguments. The
mass flux of FVS (and Van Leer) is given by

(αkρkvk) j+1/2 = (ak)L V+k,L + (ak)RV−k,R k = l , g, (38)

wherea = αρ and

V+k,L = V+
(
vk,L , cj+1/2

)
, V−k,R = V−

(
vk,R, cj+1/2

)
.

Now, we make use of the relation (23) and rewrite (38) as

(αkρkvk) j+1/2 = (ak)L(vk,L − V−k,L)+ (ak)R(vk,R− V+k,R). (39)

Adding expressions (38) and (39) for(αkρkvk) j+1/2 yields

(αkρkvk) j+1/2 = (akvk)L + (akvk)R

2
− 1

2
([V+k,R− V−k,R](ak)R− [V+k,L − V−k,L ](ak)L),

and (37) follows.
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5.2. Numerical Dissipation at Steady and Moving Contact Discontinuities

First, we assume that we have a moving gas volume contact discontinuity where

pL = pR = p, vg,L = vg,R = vg, vl ,L = vl ,R = vl , αg,L 6= αg,R. (40)

Hence, it follows from (36) that the mass flux of the AUSM scheme becomes (k = l , g)

(αkρkvk)
AUSM
j+1/2 = vkρk

αk,L + αk,R

2
− |vk|ρk

αk,R− αk,L

2
=
{
vkρkαk,L if vk > 0

vkρkαk,R otherwise,
(41)

where we have used

vk, j+1/2 = V+
(
vk, cj+1/2

)+ V−
(
vk, cj+1/2

) = vk

due to the property (23). In particular, for a steady contact discontinuity wherevk = 0 we
see that the AUSM scheme has vanishing numerical dissipation, i.e.,

(αkρkvk)
AUSM
j+1/2 = 0. (42)

Next, let us consider the FVS (Van Leer) scheme. First, we observe that

|V |(v, c) =
|v| |v| > c

1
2

[
v2

c + c
]

otherwise.
(43)

Hence, from (37) and (40) it follows that the mass flux of the FVS (Van Leer) scheme for
|vk| ≤ c becomes

(αkρkvk)
FVS
j+1/2 = vkρk

αk,L + αk,R

2
− 1

2

(
v2

k

cj+1/2
+ cj+1/2

)
ρk
αk,R− αk,L

2
, (44)

for k = l , g. In particular, for a stationary contact discontinuity the FVS mass flux assigns
a numerical dissipation given by

(αkρkvk)
FVS
j+1/2 = −cj+1/2ρk

αk,R− αk,L

4
6= 0. (45)

In view of the analytical expressions for the dissipation mechanism of the various schemes
given above, we can explain the results of the numerical experiments in Section 4 as
follows:

• AUSM has vanishing dissipation for a stationary gas volume fraction contact disconti-
nuity while FVS and Van Leer introduce a numerical dissipation given by (45). In particular,
this numerical dissipation depends on the sound velocity of the two-phase mixture. The dif-
ference between these two mass fluxes was clearly observed in the numerical example of
Section 4.2 (see left plots of Figs. 4–6).
• In the example presented in Section 4.3, the FVS and Van Leer schemes gave an

excessive numerical dissipation for a moving gas volume fraction contact discontinuity.
The smearing out effect was especially strong on the side of the gas front adjacent to the
pure liquid region; see left plots of Figs. 8–9 and Figs. 11–12. The explanation of this
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phenomenon lies in the viscous term of (44) whose value depends directly on the sound
velocity cj+1/2, which is much higher in the pure liquid region (cj+1/2= 1000 m/s) than
in the two-phase region (typicallycj+1/2 < 50 m/s). On the other hand, (41) shows that
the viscous term of the AUSM flux depends on the fluid velocity for a moving gas volume
fraction contact discontinuity.
• The shock tube example of Section 4.1 revealed no essential difference among the

various schemes. In particular, the approximation of the gas volume fraction contact dis-
continuity (the middle discontinuity shown in the left plots of Figs. 1–3) exhibits similar
behavior, with the AUSM approximation being slightly sharper. This is because the sound
velocity for the two-phase mixture for this example is less than 30 m/s throughout the whole
pipeline, while the liquid velocity is about 8 m/s. Consequently, the dissipation terms of
the mass fluxes corresponding to the AUSM and FVS (and Van Leer) schemes are not very
different in strength.

6. REMOVAL OF NUMERICAL DISSIPATION AT CONTACT DISCONTINUITIES

As observed above, a main drawback of FVS and Van Leer is the excessive numeri-
cal dissipation at volume fraction contact discontinuities. Now we seek to eliminate this
dissipation following ideas described in [24] for Euler equations.

6.1. AUSMD and AUSMV

Using an idea similar to the one applied by Wada and Liou [24] for Euler equations we
suggest replacing the velocity-splitting functionsV± by a more general pair̃V±. More
precisely, for|v| ≤ c we defineṼ± as a convex combination ofV± and(v ± |v|)/2, that is

Ṽ±(v, c, χ)=
{
χV±(v, c)+ (1− χ)v±|v|2 |v| ≤ c

1
2(v ± |v|) otherwise.

(46)

An important feature of the pair̃V± is that it still satisfies the property (23), i.e.,

Ṽ+(v, c, χ)+ Ṽ−(v, c, χ) = v ∀(c, χ). (47)

Now we define two new schemes denoted as AUSMV and AUSMD by replacingV± by Ṽ±

in the definition of the convective flux part of the FVS and Van Leer scheme respectively.
The pressure termFp is treated as before. In fact, the parameterχ defines a whole family of
AUSMV and AUSMD schemes and in the following we will specify howχ can be chosen
to obtain “good” numerical fluxes with respect to the accurate approximation of steady and
moving contact discontinuities.

First, we observe that the mass flux of AUSMV (and AUSMD) now is given by

(αρv) j+1/2 = (αρ)L Ṽ+L + (αρ)RṼ−R , (48)

where

Ṽ+L = Ṽ+
(
vL , cj+1/2, χL

)
, Ṽ−R = Ṽ−

(
vR, cj+1/2, χR

)
. (49)
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For simplicity, we have omitted the subscriptk denoting the two phases. Since the property
(47) still holds, we can show by the same arguments as above that the numerical mass flux
of AUSMV (and AUSMD) is given by (37) where the viscous termdFVS

j+1/2 now is replaced
by

dAUSMV
j+1/2 = |Ṽ |

(
vR, cj+1/2, χR

)
(αρ)R− |Ṽ |

(
vL , cj+1/2, χL

)
(αρ)L , (50)

where

|Ṽ |(v, c, χ) = Ṽ+(v, c, χ)− Ṽ−(v, c, χ) = χ |V |(v, c)+ (1− χ)|v|, (51)

where|V |(v, c) = V+(v, c)− V−(v, c) as before. In particular, we observe that|Ṽ | con-
sists of two terms. In the following, we will see that the purpose of the first one is to enable
us to chooseχ such that vanishing dissipation is obtained for a steady gas volume fraction
contact discontinuity. Moreover, the second term ensures that the AUSM mass flux (41) is
recovered for a moving gas volume fraction contact discontinuity.

Thus, the purpose now is to specify the parametersχL , χR in (50) such that the mass
flux of the FVS (and Van Leer) scheme takes the same form as the mass flux of AUSM at
a stationary and moving gas volume fraction contact discontinuity.

6.1.1. Stationary contact discontinuity.For a stationary volume fraction contact discon-
tinuity (40) wherev = 0, we see that (50) becomes

dAUSMV
j+1/2 = |Ṽ |

(
0, cj+1/2, χR

)
(αρ)R− |Ṽ |

(
0, cj+1/2, χL

)
(αρ)L

= χR|V |
(
0, cj+1/2

)
(αρ)R− χL |V |

(
0, cj+1/2

)
(αρ)L

= |V |(0, cj+1/2
)
ρ(p)[χRαR− χLαL ]. (52)

Consequently, by choosingχL , χR such that

χRαR− χLαL = 0 (53)

for both phases, no numerical dissipation is introduced in the mass fluxes at the steady
contact discontinuity.

6.1.2. Moving contact discontinuity.For a moving volume fraction contact discontinuity
(40) withv 6= 0 we see that (50) becomes

dAUSMV
j+1/2 = |Ṽ |

(
v, cj+1/2, χR

)
(αρ)R− |Ṽ |

(
v, cj+1/2, χL

)
(αρ)L

= (χR|V |
(
v, cj+1/2

)+ (1− χR)|v|)(αρ)R−
(
χL |V |(v, cj+1/2

)
+ (1− χL)|v|)(αρ)L
= |v|ρ(p)[αR− αL ], (54)

where we have used (53). Consequently, in view of (37), (50), and (54) the mass flux
becomes

(αρv)AUSMV
j+1/2 = vρ(p)

αL + αR

2
− 1

2
|v|ρ(p)[αR− αL ]. (55)
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FIG. 14. First-order AUSMD. Left: Gas volume fraction aftert = 7.5 s. Middle: Liquid velocity. Right:
Pressure. The plots of liquid velocity and pressure are considered aftert = 2.5, 7.5, and 10.0 s.

In other words, the AUSM mass flux (41) is recovered. Many different choices can be made
for χL , χR such that (53) is satisfied. Here we simply use

χL = αR, χR = αL . (56)

Hence, in the following, AUSMV denotes the FVS scheme where the velocity splitting
functionsV± have been replaced bỹV± in the convective flux part as described by (48) and
(49), together with weighting functionsχL , χR given by (56). Similarly, AUSMD is the Van
Leer scheme wherẽV± together with (56) have replaced the original splitting functionsV±.

Remark5. Many choices for the weighting functionsχL , χR can be made such that
(53) holds. While our choice (56) works for the present isothermal two-phase model, a
more sophisticated choice, where more conditions are imposed, must be made for the
nonisothermal case. However, such modifications should be possible to obtain by combining
the above approach with ideas previously used for Euler equations [24].

7. MORE NUMERICAL EXPERIMENTS

In this section we revisit the two flow cases we studied in Sections 4.2 and 4.3 and
investigate the performance of the two hybrid FVS/FDS schemes denoted as AUSMD and
AUSMV. In addition, we do some further testing of AUSMV.
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FIG. 15. First-order AUSMV. Left: Gas volume fraction aftert = 7.5 s. Middle: Liquid velocity. Right:
Pressure. The plots of liquid velocity and pressure are considered aftert = 2.5, 7.5, and 10.0 s.
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FIG. 16. Second-order AUSMV. Left: Gas volume fraction aftert = 7.5 s. Middle: Liquid velocity. Right:
Pressure. The plots of liquid velocity and pressure are considered aftert = 2.5, 7.5, and 10.0 s.

7.1. Fast Transients

Figure 14 shows the performance of AUSMD for the fast transient flow case. In particular,
we see that AUSMD has vanishing dissipation for the stationary gas volume fraction contact
discontinuity, similar to AUSM, see Fig. 6. However, severe oscillations (though slightly
weaker than for AUSM) are introduced in liquid velocity and pressure, demonstrating that
the dissipation provided in AUSMD is not strong enough to ensure a steady shock structure
for this flow case.

The necessity of an FVS type of dissipation mechanism to ensure a steady shock structure
for the pressure pulse example is demonstrated in Fig. 15. The plots show that the first-order
AUSMV scheme is able to capture the velocity and pressure waves in a monotone and
accurate way (a minor overshoot is observed at timet = 2.5) before the moving sonic
waves enter the gas-dominated region atx = 750 m as well as after that, when reflecting
waves are produced. The performance of the second-order AUSMV is shown in Fig. 16. The
success of AUSMV is due to the fact that the scheme has a FVS type dissipation mechanism
which keeps a steady shock structure as well as a vanishing dissipation at the stationary gas
volume fraction contact discontinuity.
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FIG. 17. First-order AUSMD. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The plots
are considered aftert = 250 s.
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FIG. 18. First-order AUSMV. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The plots
are considered aftert = 250 s.

7.2. Slow Transients

The first- and second-order AUSMD (Figs. 17 and 19) and AUSMV (Figs. 18 and 20)
give results that are very similar. Most notably, they both remove the excessive smearing of
the moving gas volume fraction contact discontinuity associated with the FVS and Van Leer
schemes. Both AUSMD and AUSMV produce results comparable with those of AUSM;
compare with Figs. 10 and 13.

7.3. Comparison between AUSMV and a Roe Scheme

The objective of the following numerical test is to gain more insight into the approxi-
mation properties of the AUSMV scheme. For that purpose, we compare the performance
of the first-order AUSMV with that of the first-order of a fully numerical Roe solver. This
Roe scheme has previously been tested for the current two-phase model [11, 17]. The Roe
scheme is known to be very accurate in the resolution of contact discontinuities. All the
presented results have been achieved using the same flow conditions as given in Sections 4.2
and 4.3.

Figure 21 shows the comparison between the first-order AUSMV and the Roe scheme for
the pressure pulse example of Section 4.2, where we used a fine grid1x = 1.0 m. Figure 22
shows the comparison between the first-order AUSMV and the Roe scheme for the mass
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FIG. 19. Second-order AUSMD. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The
plots are considered aftert = 250 s.
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FIG. 20. Second-order AUSMV. Left: Gas volume fraction. Middle: Liquid velocity. Right: Pressure. The
plots are considered aftert = 250 s.

transport example of Section 4.3 using a fine grid1x = 2.5 m. The results produced by
the two schemes are in very good agreement. In particular, the results indicate that the
AUSMV scheme is comparable with the much more expensive fully numerical Roe scheme
with respect to accuracy. This test also justifies our use of the AUSMV scheme to generate
reference solutions for the flow cases presented in this paper.

7.4. Flow with Unequal Phase Velocity

The objective of this numerical example is twofold. First, we want to check the perfor-
mance of AUSMV on a mass transport example involving unequal fluid velocities. Second,
we want to demonstrate that AUSMV works well using only a rough estimate of the two-
phase sound velocityω given by

ω2 = p

αgρl (1− αg)
, (57)

which is the sound velocity corresponding to the equal phase velocity model (K = 1,
S= 0).
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FIG. 21. Comparison of AUSMV and Roe (first order). Left: Gas volume fraction at timet = 7.5 s. Middle:
Liquid velocity. Right: Pressure. The plots of liquid velocity and pressure are considered aftert = 2.5, 7.5, and
10.0 s;1x = 1.0 m.
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FIG. 22. Comparison of AUSMV and Roe (first order). Left: Gas volume fraction. Middle: Liquid velocity.
Right: Pressure. The plots are considered aftert = 250 s;1x = 2.5 m.

We consider the mass transport example of Section 4.3 using the slip (5) withK = 1.2 and
S= 0.5. First, we solved with AUSMV, using (26) together with (13) to estimate the sound
velocity for the two-phase mixture. The solutions are shown in Fig. 23. Then we computed
the solution with AUSMV using (57) in (26). We observed no difference between these two
approximations, and we have not plotted the results of this last computation.

This indicates that we might replace the slip law (5) by a more general hydrodynamic
model which determines the slip between the fluid velocities, while still using the no-slip
sound velocityω given by (57) to obtain a rough estimate for the sound velocity to be used
in the AUSMV scheme.
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FIG. 23. Second-order AUSMV. Top: Gas volume fraction (left); liquid velocity (right). Bottom: Gas velocity
(left); pressure (right). The plots are considered aftert = 250 s.
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8. CONCLUSION

In this paper we have explored different flux-splitting schemes, based on the idea of com-
bining flux-vector splitting (FVS) and flux-difference splitting (FDS), for a one-dimensional
two-phase model for unsteady compressible liquid and gas flow. This model is more com-
plex than the Euler equations since the flux cannot be expressed in terms of its conservative
variables, hence Jacobians must be calculated numerically, which leads to time-consuming
algorithms. This makes it attractive to use methods based on scalar calculations such as
flux-vector-splitting schemes. In particular, we propose an FVS, a Van Leer, and an AUSM
type scheme by considering natural extensions of ideas applied for Euler equations. We have
demonstrated that the FVS scheme is able to capture fast-propagating acoustic waves in
pressure and fluid velocity, while it strongly smears volume fraction contact discontinuities.
On the other hand, the AUSM type scheme gives accurate resolution of such volume frac-
tion contact discontinuities, while it cannot produce monotone approximations of fast sonic
waves in pressure and fluid velocity. In particular, we have proposed a hybrid FVS/FDS
scheme, denoted as AUSMV, which combines AUSM and FVS such that accurate solutions
are obtained both for fast-moving sonic waves and contact discontinuities. Based on our
investigations, we believe that such a hybrid scheme has the potential to become a suitable
tool to describe various transport problems described by the current two-phase model. Fur-
thermore, we also believe that ideas presented in this paper can be extended to more general
two-fluid models. Such investigations are now in progress.
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